{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "2c094c99",
   "metadata": {},
   "source": [
    "# Compatible Data Types"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1ac27d86",
   "metadata": {},
   "source": [
    "- We can use \n",
    "    - Python lists\n",
    "    - Numpy arrays\n",
    "    - Pandas Series & Dataframes"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "2535de61",
   "metadata": {},
   "outputs": [],
   "source": [
    "import matplotlib.pyplot as plt\n",
    "import numpy as np\n",
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "966bdd47",
   "metadata": {},
   "source": [
    "## Python lists"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "b5e16e09",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[<matplotlib.lines.Line2D at 0x7ffa784f9790>]"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAkZ0lEQVR4nO3deXhV5bn+8e8DhHkmIIEQwjwGEQOIWEXrUUCOitrWWm3VKtWjHY8CigPOVFurrQOlx3rkaK0ts4KiVnHWCigZmOeZMEgCJIEMz++P7PYXY4Ad2Mnae+f+XFeu7L3Wm6ynr8ndxcpaz2vujoiIxL46QRcgIiKRoUAXEYkTCnQRkTihQBcRiRMKdBGROFEvqAMnJiZ6ampqUIcXEYlJS5Ys2ePubSvbF1igp6amsnjx4qAOLyISk8xs09H26ZKLiEicUKCLiMQJBbqISJxQoIuIxAkFuohInAgr0M1so5llmtmXZvaNW1OszO/NbK2ZZZjZoMiXKiIix1KV2xbPdfc9R9k3CugR+hgKPBv6LCIiNSRSl1wuAaZ7mU+BlmaWFKHvLSISF4pKSnlm0VqWbdlfLd8/3EB34E0zW2Jm4yrZ3xHYUu791tC2rzGzcWa22MwW7969u+rViojEqKxtuVz69Ec8+sYqXs/aWS3HCPeSy3B3325m7YC3zGylu79fbr9V8jXfWDnD3acB0wDS09O1soaIxL3CohL+8M4apr63nlaN6/PsDwYxKq16LmCEFejuvj30OcfMZgNDgPKBvhXoVO59MrA9UkWKiMSixRv3MX5mBut3H+I7pydz10V9adE4odqOd9xAN7MmQB13PxB6fQFwf4Vh84BbzeyvlP0xNNfdd0S8WhGRGHDwcDGPvbGS6Z9uokOLRky/fghn96y0n1ZEhXOGfgow28z+Nf4v7v6Gmd0E4O5TgQXAaGAtkA9cVz3liohEt/dW7+bOWZlszy3gR8NSuf3CXjRpUDN9EI97FHdfD5xayfap5V47cEtkSxMRiR3784/wwGsrmLl0K93aNuHvPxlGemrrGq0hsPa5IiLx4vXMHdw9N5v9+Ue49dzu3Hpedxom1K3xOhToIiInKCevkHvmZvNG9k76d2zOC9cPpl+HFoHVo0AXEakid+fvS7by4GvLKSwuZcLI3tz4rS7UqxtseywFuohIFWzZl8+dszP5YM0ehqS2ZsrlaXRt2zTosgAFuohIWEpKnemfbOSxhasw4IFL+/ODISnUqVPZc5XBUKCLiBzH2pwDjJ+RwdLN+xnRqy0PjU2jY8tGQZf1DQp0EZGjKCop5Y/vreP3/1hL4wZ1+d33TuXSgR0JPZcTdRToIiKVyNyay+0zlrFy5wEuGpDEfRf3I7Fpg6DLOiYFuohIOYVFJTzx9hr+9MF62jSpzx+vOZ0L+7UPuqywKNBFREI+W7+XibMy2bDnEFcO7sQdo/vQolH1NdOKNAW6iNR6BwqL+PUbK3nx0810at2Il24YyvDuiUGXVWUKdBGp1d5dmcOk2ZnsyCvkx2d14b8v6Enj+rEZjbFZtYjISdp36AgPvLac2V9so0e7psy8+UwGpbQKuqyTokAXkVrF3ZmfuYN752aTW1DEz77dg1vO7UaDejXfTCvSFOgiUmvsyivkrjlZvLV8FwOSW/DiDUPpk9Q86LIiRoEuInHP3Xnl8y08tGAFR4pLmTS6D9cNTw28mVakhR3oZlYXWAxsc/cxFfaNAOYCG0KbZrl7xWXqRERq3Oa9+UyclcHH6/YytEtrfn35AFITmwRdVrWoyhn6z4EVwNH+ffJBxaAXEQlKSanz/Ecb+M2bq6hXpw4Pj03jysGdoqqZVqSFFehmlgxcBDwE/KpaKxIROUmrd5U10/pyy37O692Oh8b2J6lF9DXTirRwz9CfAMYDzY4xZpiZLQO2A7e5e3bFAWY2DhgHkJKSUrVKRUSO40hxKc8uWsdT766hWcMEnrxyIBef2iFqm2lF2nED3czGADnuviR0rbwyS4HO7n7QzEYDc4AeFQe5+zRgGkB6erqfYM0iIt+wbMt+xs/IYNWuA1wysAP3jOlLmyhvphVp4ZyhDwcuDgV1Q6C5mb3o7lf/a4C755V7vcDMnjGzRHffE/mSRUT+v4IjJTz+1iqe+3AD7Zo15H9+mM75fU8JuqxAHDfQ3f0O4A74990st5UP89D29sAud3czGwLUAfZGvFoRkXI+WbeXibMy2LQ3n6uGpjBxVG+aN4ydZlqRdsL3oZvZTQDuPhW4ArjZzIqBAuBKd9clFRGpFnmFRTyyYCUv/3Mznds05i83DuXMbrHXTCvSLKjcTU9P98WLFwdybBGJXf9YsYtJs7PIOVDIDd/qyi/P70mj+rH/2H64zGyJu6dXtk9PiopITNh78DD3vbqcecu207t9M/54zemc2qll0GVFFQW6iEQ1d2fesu1MnpfNwcPF/PL8ntw8ohv168XXY/uRoEAXkai1I7eAu2Zn8Y+VOQzs1JJHrxhAz1OO9ThM7aZAF5GoU1rqvPz5Zh5ZsJLi0lLuuqgP1w3vQt04fmw/EhToIhJVNu45xMRZGXy6fh9ndmvDlMsGkNKmcdBlxQQFuohEheKSUv780QZ+++Zq6terw68vT+O76Z1qzWP7kaBAF5HArdiRx4SZGWRszeU/+p7Cg5f255TmDYMuK+Yo0EUkMIeLS3j63XU88+5aWjRK4KmrTuOitCSdlZ8gBbqIBGLp5q+YMCODNTkHGXtaR+4Z05dWTeoHXVZMU6CLSI3KP1LMb99czZ8/2kBS84Y8f+1gzu3dLuiy4oICXURqzEdr9zBxVgZb9hVwzRmdGT+yF81qcTOtSFOgi0i1yy0o4uH5K3hl8Ra6JDbhlXFnMLRrm6DLijsKdBGpVm9m7+SuOVnsPXSEm87pxi/O70HDhNrTTKsmKdBFpFrsPnCYya9mMz9jB32SmvPcjwaTltwi6LLimgJdRCLK3Zn9xTbuf205+YdLuP3CXow7uysJddVMq7op0EUkYrbtL2DS7EwWrdrNoJSyZlrd26mZVk0JO9DNrC6wGNjm7mMq7DPgSWA0kA9c6+5LI1moiESv0lLnpc82MeX1lTgw+T/7cs2wVDXTqmFVOUP/ObACaF7JvlFAj9DHUODZ0GcRiXPrdx9k4sxM/rlxH9/qkcjDY9Po1FrNtIIQVqCbWTJwEfAQ8KtKhlwCTA+tI/qpmbU0syR33xG5UkUkmhSXlPKnDzbwu7dX07BeHR67YgBXnJ6sx/YDFO4Z+hPAeOBoF8M6AlvKvd8a2va1QDezccA4gJSUlKrUKSJRJHt7LhNmZpC1LY+R/dpz/yX9aKdmWoE7bqCb2Rggx92XmNmIow2rZNs3Vp9292nANChbJDr8MkUkGhQWlfCHd9Yw9b31tGpcn2d/MIhRaUlBlyUh4ZyhDwcuNrPRQEOguZm96O5XlxuzFehU7n0ysD1yZYpI0JZs2sf4GRms232Iywclc/eYPrRsrGZa0eS4ge7udwB3AITO0G+rEOYA84BbzeyvlP0xNFfXz0Xiw6HDxTy2cBUvfLKRDi0a8cL1QzinZ9ugy5JKnPB96GZ2E4C7TwUWUHbL4lrKblu8LiLViUig3l+9mztmZbI9t4AfntGZ20f2pmkDPb4Srar0X8bdFwGLQq+nltvuwC2RLExEgpObX8QD85czY8lWurZtwt9+MozBqa2DLkuOQ/9XKyJf80bWDu6em82+Q0e45dxu/PQ8NdOKFQp0EQEg50Ah987N5vWsnfTr0Jz/vW4w/TqomVYsUaCL1HLuzowlW3lw/goKikoYP7IXN35LzbRikQJdpBbbsi+fO2dn8sGaPQxObcWUywfQrW3ToMuSE6RAF6mFSkud6Z9s5NGFqzDg/kv6cfXQztRRM62YpkAXqWXW5hxk4swMFm/6irN7tuXhsf1JbqVmWvFAgS5SSxSVlDLt/fU8+fYaGtWvy2+/cyqXDeqoZlpxRIEuUgtkbctl/IwMlu/IY3Rae+67uD9tmzUIuiyJMAW6SBwrLCrhyX+sYdr762ndpD5Trz6dkf3bB12WVBMFukic+nzjPibMyGD9nkN8Nz2ZSaP70qJxQtBlSTVSoIvEmYOHi3n0jZVM/2QTya0a8eKPh3JWj8Sgy5IaoEAXiSOLVuUwaXYW23MLuG54Krdd0IsmaqZVa+i/tEgc+OrQER6Yv5xZS7fRvV1TZtx0Jqd3bhV0WVLDFOgiMczdWZC5k3vnZbE/v4ifntedW8/rToN6aqZVGynQRWJUTl4hd83J4s3lu0jr2ILp1w+lb4fmQZclAQpnTdGGwPtAg9D4Ge5+b4UxI4C5wIbQplnufn9EKxURoOys/O+Lt/LA/OUcKS7ljlG9+fFZXainZlq1Xjhn6IeB89z9oJklAB+a2evu/mmFcR+4+5jIlygi/7JlXz53zMrkw7V7GNKlNVMuS6OrmmlJSDhrijpwMPQ2IfTh1VmUiHxdSanzwscbeWzhKurWMR68tD9XDUlRMy35mrCuoZtZXWAJ0B142t0/q2TYMDNbBmynbCHp7Eq+zzhgHEBKSsoJFy1Sm6zZdYDxMzP4YvN+RvRqy8Nj0+jQslHQZUkUCivQ3b0EGGhmLYHZZtbf3bPKDVkKdA5dlhkNzAF6VPJ9pgHTANLT03WWL3IMR4pLmfreOp56Zy1NGtTlie8N5JKBHdRMS46qqotE7zezRcBIIKvc9rxyrxeY2TNmlujueyJWqUgtkrF1P+NnZLBy5wHGDEhi8sX9SGyqZlpybOHc5dIWKAqFeSPgfODXFca0B3a5u5vZEKAOsLc6ChaJZ4VFJfzurdX86YP1JDZtwLRrTueCfmqmJeEJ5ww9CXghdB29DvA3d3/NzG4CcPepwBXAzWZWDBQAV4b+mCoiYfp0/V4mzsxg4958vj+kExNH9aFFIzXTkvCFc5dLBnBaJdunlnv9FPBUZEsTqR0OFBYx5fWVvPTZZlJaN+YvNwzlzO5qpiVVpydFRQL0zspdTJqdxa68Qm44qwu/uqAnjevr11JOjH5yRAKw79AR7n81mzlfbqdHu6Y8c/OZnJaiZlpychToIjXI3Xk1YweT52WTV1DEz7/dg/86t5uaaUlEKNBFasjO3LJmWm+v2MWA5BY8euNQerdXMy2JHAW6SDVzd/76+RYenr+CIyWlTBrdh+uGp6qZlkScAl2kGm3ae4iJMzP5ZP1ezujamimXDSA1sUnQZUmcUqCLVIOSUuf5jzbwmzdXkVCnDg+PTePKwZ3UTEuqlQJdJMJW7SxrprVsy36+3bsdD47tT1ILNdOS6qdAF4mQI8WlPLNoLU+/u5ZmDRN48sqBXHyqmmlJzVGgi0TAl1v2M2FGBqt2HeCSgR24Z0xf2qiZltQwBbrISSg4UsLjb63iuQ830K5ZQ/7nh+mc3/eUoMuSWkqBLnKCPl63h4kzM9m8L5+rhqYwcVRvmjdUMy0JjgJdpIryCot4ZMFKXv7nZjq3acxfbhzKmd3UTEuCp0AXqYK3l+9i0pxMdh84zLizu/LL83vSqL4e25fooEAXCcPeg4eZ/OpyXl22nd7tmzHtmnRO7dQy6LJEvkaBLnIM7s68ZduZPC+bg4eL+eX5Pbl5RDfq19Nj+xJ9wlmCriHwPtAgNH6Gu99bYYwBTwKjgXzgWndfGvlyRWrO9v0F3DUni3dW5jCwU0sevWIAPU9pFnRZIkcVzhn6YeA8dz9oZgnAh2b2urt/Wm7MKKBH6GMo8Gzos0jMKS11Xv58M48sWElxaSl3XdSH64Z3oa4e25coF84SdA4cDL1NCH1UXC/0EmB6aOynZtbSzJLcfUdEqxWpZhv2HGLizAw+27CPM7u1YcplA0hp0zjoskTCEtY19NAC0UuA7sDT7v5ZhSEdgS3l3m8NbftaoJvZOGAcQEpKygmWLBJ5xSWlPPfhBh5/azX169ZhymVpfG9wJz22LzElrEB39xJgoJm1BGabWX93zyo3pLKf+opn8bj7NGAaQHp6+jf2iwRhxY48JszMIGNrLuf3OYUHL+1P+xYNgy5LpMqqdJeLu+83s0XASKB8oG8FOpV7nwxsP+nqRKrR4eISnn5nLc8sWkeLRgk8ddVpXJSWpLNyiVnh3OXSFigKhXkj4Hzg1xWGzQNuNbO/UvbH0FxdP5dotnTzV0yYkcGanIOMPa0j94zpS6sm9YMuS+SkhHOGngS8ELqOXgf4m7u/ZmY3Abj7VGABZbcsrqXstsXrqqlekZOSf6SY3yxczfMfb6B984Y8f+1gzu3dLuiyRCIinLtcMoDTKtk+tdxrB26JbGkikfXR2j1MnJXBln0FXH1GChNG9qaZmmlJHNGTohL3cguKeHj+Cl5ZvIUuiU14ZdwZDO3aJuiyRCJOgS5xbWH2Tu6ek8XeQ0e46Zxu/OL8HjRMUDMtiU8KdIlLuw8cZvK8bOZn7qBPUnOe+9Fg0pJbBF2WSLVSoEtccXdmf7GN+19bTv7hEm67oCc/OacbCXXVTEvinwJd4sa2/QVMmp3JolW7GZRS1kyrezs105LaQ4EuMa+01Hnps01MeX0lpQ73/mdffjgsVc20pNZRoEtMW7/7IBNnZvLPjfs4q3sij1yWRqfWaqYltZMCXWJScUkpf/pgA797ezUN69Xh0SsG8J3Tk/XYvtRqCnSJOdnbc5kwM4OsbXlc2O8UHrikP+2aq5mWiAJdYkZhUQl/eGcNU99bT6vG9Xn2B4MYlZYUdFkiUUOBLjFhyaZ9jJ+Rwbrdh7h8UDJ3j+lDy8ZqpiVSngJdotqhw8U8tnAVL3yykQ4tGvHC9UM4p2fboMsSiUoKdIla76/ezR2zMtm2v4AfDevM7SN707SBfmRFjka/HRJ1cvOLeGD+cmYs2UrXtk34+03DGJzaOuiyRKKeAl2iyhtZO7h7bjb7Dh3hv0Z042ffVjMtkXAp0CUq5Bwo5N652byetZO+Sc15/trB9O+oZloiVRHOEnSdgOlAe6AUmObuT1YYMwKYC2wIbZrl7vdHtFKJS+7OjCVbeXD+CgqKSrj9wl6MO7urmmmJnIBwztCLgf9296Vm1gxYYmZvufvyCuM+cPcxkS9R4tWWffncOTuTD9bsIb1zK6ZcPoDu7ZoGXZZIzApnCbodwI7Q6wNmtgLoCFQMdJGwlJY60z/ZyKMLVwFw38X9uOaMztRRMy2Rk1Kla+hmlkrZ+qKfVbJ7mJktA7YDt7l7diVfPw4YB5CSklLlYiX2rc05yMSZGSze9BVn92zLw2P7k9xKzbREIiHsQDezpsBM4Bfunldh91Kgs7sfNLPRwBygR8Xv4e7TgGkA6enpfqJFS+wpKill2vvrefLtNTSqX5fffudULhvUUc20RCIorEA3swTKwvwld59VcX/5gHf3BWb2jJkluvueyJUqsSprWy7jZ2SwfEceo9Pac9/F/WnbrEHQZYnEnXDucjHgOWCFuz9+lDHtgV3u7mY2BKgD7I1opRJzCotKePIfa5j2/npaN6nP1KsHMbK/mmmJVJdwztCHA9cAmWb2ZWjbnUAKgLtPBa4AbjazYqAAuNLddUmlFvt84z4mzMhg/Z5DfOf0ZO66qC8tGicEXZZIXAvnLpcPgWNe6HT3p4CnIlWUxK6Dh4t59I2VTP9kE8mtGvF/Px7Ct3qomZZITdCTohIxi1blMGl2FttzC7hueCq3XdCLJmqmJVJj9NsmJ+2rQ0d4YP5yZi3dRvd2TZlx05mc3rlV0GWJ1DoKdDlh7s7rWTu5Z24W+/OL+Ol53bn1vO40qKdmWiJBUKDLCcnJK+TuuVkszN5FWscWTL9+KH07NA+6LJFaTYEuVeLu/H3xVh6cv5zDxaVMHNWbG87qQj010xIJnAJdwrZlXz53zMrkw7V7GNKlNVMuS6NrWzXTEokWCnQ5rpJS54WPN/LYwlXUrWM8eGl/rhqSomZaIlFGgS7HtGbXASbMzGDp5v2M6NWWh8em0aFlo6DLEpFKKNClUkUlpUxdtI4/vLOWJg3q8sT3BnLJwA5qpiUSxRTo8g2ZW3O5fcYyVu48wJgBSUy+uB+JTdVMSyTaKdDl3wqLSvjd26v50/vrSWzagGnXnM4F/doHXZaIhEmBLgB8tn4vE2dlsmHPIb4/pBMTR/WhRSM10xKJJQr0Wu5AYRG/fmMlL366mZTWjfnLDUM5s3ti0GWJyAlQoNdi767M4c7ZmezKK+SGs7rwqwt60ri+fiREYpV+e2uhfYeOcP+r2cz5cjs92jXlmZvP5LQUNdMSiXXhrFjUCZgOtAdKgWnu/mSFMQY8CYwG8oFr3X1p5MuVk+HuvJaxg8nzssktKOLn3+7Bf53bTc20ROJEOGfoxcB/u/tSM2sGLDGzt9x9ebkxoyhbFLoHMBR4NvRZosSuvEImzc7i7RW7GJDcgpduHErv9mqmJRJPwlmxaAewI/T6gJmtADoC5QP9EmB6aNm5T82spZklhb5WAuTuvPL5Fh5asIKiklImje7DdcNT1UxLJA5V6Rq6maUCpwGfVdjVEdhS7v3W0LavBbqZjQPGAaSkpFSxVKmqTXsPccesTD5et5czurZmymUDSE1sEnRZIlJNwg50M2sKzAR+4e55FXdX8iXfWCTa3acB0wDS09O1iHQ1KSl1nv9oA795cxUJderw0Nj+fH+wmmmJxLuwAt3MEigL85fcfVYlQ7YCncq9Twa2n3x5UlWrdh5g/MwMlm3Zz7d7t+PBsf1JaqFmWiK1QTh3uRjwHLDC3R8/yrB5wK1m9lfK/hiaq+vnNetIcSnPLFrL0++upVnDBJ68ciAXn6pmWiK1SThn6MOBa4BMM/sytO1OIAXA3acCCyi7ZXEtZbctXhfxSuWolm3Zz/gZGazadYBLBnbgnjF9aaNmWiK1Tjh3uXxI5dfIy49x4JZIFSXhKThSwuNvreK5DzfQrllDnvtROt/uc0rQZYlIQPSkaIz6eN0eJs7MZPO+fK4amsLEUb1p3lDNtERqMwV6jMkrLOKRBSt5+Z+b6dymMS/feAbDurUJuiwRiQIK9Bjy9vJdTJqTye4Dhxl3dld+eX5PGtXXY/siUkaBHgP2HjzMfa8uZ96y7fRu34xp16RzaqeWQZclIlFGgR7F3J15y7YzeV42Bw8X86v/6MlN53Sjfj09ti8i36RAj1Lb9xdw15ws3lmZw8BOLXn0igH0PKVZ0GWJSBRToEeZ0lLn5c8388iClZSUOneP6cu1Z6ZSV4/ti8hxKNCjyIY9h5g4M4PPNuxjePc2PDJ2ACltGgddlojECAV6FCguKeXPH23gt2+upn69Ovz68jS+m95Jj+2LSJUo0AO2YkceE2ZmkLE1l//oewoPXtqfU5o3DLosEYlBCvSAHC4u4el31vLMonW0aJTAU1edxkVpSTorF5ETpkAPwNLNXzFhRgZrcg5y2WkduXtMX1o1qR90WSIS4xToNSj/SDG/Wbia5z/eQFLzhjx/3WDO7dUu6LJEJE4o0GvIR2v3MHFWBlv2FXDNGZ0ZP7IXzdRMS0QiSIFezXILinh4/gpeWbyFLolNeGXcGQztqmZaIhJ5CvRqtDB7J3fPyWLvoSPcdE43fnF+DxomqJmWiFSPcJag+zMwBshx9/6V7B8BzAU2hDbNcvf7I1hjzNl94DCT52UzP3MHfZKa89yPBpOW3CLoskQkzoVzhv6/wFPA9GOM+cDdx0Skohjm7sz+Yhv3v7ac/MMl3H5hL8ad3ZWEumqmJSLVL5wl6N43s9QaqCWmbdtfwKTZmSxatZtBKWXNtLq3UzMtEak5kbqGPszMlgHbgdvcPbuyQWY2DhgHkJKSEqFDB6u01Hnps01MeX0lDkz+z75cM0zNtESk5kUi0JcCnd39oJmNBuYAPSob6O7TgGkA6enpHoFjB2rd7oNMnJnB5xu/4ls9Enl4bBqdWquZlogE46QD3d3zyr1eYGbPmFmiu+852e8drYpLSpn2wXqeeHsNDevV4bErBnDF6cl6bF9EAnXSgW5m7YFd7u5mNgSoA+w96cqiVPb2XCbMzCBrWx4j+7Xn/kv70a6ZmmmJSPDCuW3xZWAEkGhmW4F7gQQAd58KXAHcbGbFQAFwpbvH/OWUigqLSvjDO2uY+t56WjWuz7M/GMSotKSgyxIR+bdw7nL5/nH2P0XZbY1xa/HGfUyYmcG63Ye4fFAyd4/pQ8vGaqYlItFFT4oew6HDxTy2cBUvfLKRDi0a8cL1QzinZ9ugyxIRqZQC/SjeX72bO2Zlsj23gB8NS+W2C3vRtIGmS0SilxKqgv35R3hw/gpmLNlK17ZN+PtPhpGe2jroskREjkuBXs7rmTu4e242X+Uf4ZZzu/HT89RMS0RihwIdyMkr5J652byRvZN+HZrzwvWD6ddBzbREJLbU6kB3d2Ys2coDry2nsLiU8SN7ceO31ExLRGJTrQ30LfvyuXN2Jh+s2cPg1FZMuXwA3do2DbosEZETVusCvbTUmf7JRh5duAoDHrikHz8Y2pk6aqYlIjGuVgX62pwDTJiZyZJNX3FOz7Y8NLY/ya3UTEtE4kOtCPSiklL++N46fv+PtTRuUJfHv3sqY0/rqGZaIhJX4j7Qs7blcvuMDFbsyOOitCQmX9yPts0aBF2WiEjExW2gFxaV8MTba/jTB+tp3aQ+U68+nZH92wddlohItYnLQP/nhn1MnJnB+j2H+F56J+4c3YcWjROCLktEpFrFVaAfKCzi0TdW8X+fbiK5VSNe/PFQzuqRGHRZIiI1Im4C/d1VOUyalcmOvEKuH96F2y7sSeP6cfM/T0TkuGI+8b46dIQHXlvOrC+20b1dU2bcdCand24VdFkiIjUunBWL/gyMAXLcvX8l+w14EhgN5APXuvvSSBdakbszP3MH987NJregiJ+d151bzutOg3pqpiUitVM4Z+j/S9mKRNOPsn8U0CP0MRR4NvS52uzKK+TuOVm8uXwXaR1b8OINQ+mT1Lw6DykiEvXCWYLufTNLPcaQS4DpoXVEPzWzlmaW5O47IlVkee+uzOFnf/2CI8Wl3DGqNz8+qwv11ExLRCQi19A7AlvKvd8a2vaNQDezccA4gJSUlBM6WJfEJgxKacXki/vRJbHJCX0PEZF4FIlT28qen/fKBrr7NHdPd/f0tm1PbG3O1MQmvHD9EIW5iEgFkQj0rUCncu+Tge0R+L4iIlIFkQj0ecAPrcwZQG51XT8XEZGjC+e2xZeBEUCimW0F7gUSANx9KrCAslsW11J22+J11VWsiIgcXTh3uXz/OPsduCViFYmIyAnR/X4iInFCgS4iEicU6CIicUKBLiISJ6zsb5oBHNhsN7DpBL88EdgTwXIiJVrrguitTXVVjeqqmnisq7O7V/pkZmCBfjLMbLG7pwddR0XRWhdEb22qq2pUV9XUtrp0yUVEJE4o0EVE4kSsBvq0oAs4imitC6K3NtVVNaqrampVXTF5DV1ERL4pVs/QRUSkAgW6iEiciOpAN7ORZrbKzNaa2cRK9puZ/T60P8PMBkVJXSPMLNfMvgx93FNDdf3ZzHLMLOso+4Oar+PVVePzZWadzOxdM1thZtlm9vNKxtT4fIVZVxDz1dDM/mlmy0J13VfJmCDmK5y6Avl9DB27rpl9YWavVbIv8vPl7lH5AdQF1gFdgfrAMqBvhTGjgdcpWzXpDOCzKKlrBPBaAHN2NjAIyDrK/hqfrzDrqvH5ApKAQaHXzYDVUfLzFU5dQcyXAU1DrxOAz4AzomC+wqkrkN/H0LF/BfylsuNXx3xF8xn6EGCtu6939yPAXylbkLq8fy9Q7e6fAi3NLCkK6gqEu78P7DvGkCDmK5y6apy773D3paHXB4AVlK2FW16Nz1eYddW40BwcDL1NCH1UvKMiiPkKp65AmFkycBHwP0cZEvH5iuZAP9ri01UdE0RdAMNC/wx83cz6VXNN4QpivsIV2HyZWSpwGmVnd+UFOl/HqAsCmK/Q5YMvgRzgLXePivkKoy4I5ufrCWA8UHqU/RGfr2gO9HAWnw57geoICueYSynrt3Aq8AdgTjXXFK4g5iscgc2XmTUFZgK/cPe8irsr+ZIama/j1BXIfLl7ibsPpGzd4CFm1r/CkEDmK4y6any+zGwMkOPuS441rJJtJzVf0Rzo4Sw+HcQC1cc9prvn/eufge6+AEgws8RqriscUbmgd1DzZWYJlIXmS+4+q5IhgczX8eoK+ufL3fcDi4CRFXYF+vN1tLoCmq/hwMVmtpGyy7LnmdmLFcZEfL6iOdA/B3qYWRczqw9cSdmC1OUFsUD1cesys/ZmZqHXQyib573VXFc4onJB7yDmK3S854AV7v74UYbV+HyFU1dA89XWzFqGXjcCzgdWVhgWxHwdt64g5svd73D3ZHdPpSwj3nH3qysMi/h8HXdN0aC4e7GZ3QospOzOkj+7e7aZ3RTaH8gC1WHWdQVws5kVAwXAlR76s3Z1sihd0DuMuoKYr+HANUBm6PorwJ1ASrm6gpivcOoKYr6SgBfMrC5lgfg3d38t6N/HMOsK5PexMtU9X3r0X0QkTkTzJRcREakCBbqISJxQoIuIxAkFuohInFCgi4jECQW6iEicUKCLiMSJ/wcE0L49wqYRpwAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.plot([1,2,3,4,5,])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3b485050",
   "metadata": {},
   "source": [
    "## Numpy array"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "aaeef9f2",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[<matplotlib.lines.Line2D at 0x7ffa50086e80>]"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAkZ0lEQVR4nO3deXhV5bn+8e8DhHkmIIEQwjwGEQOIWEXrUUCOitrWWm3VKtWjHY8CigPOVFurrQOlx3rkaK0ts4KiVnHWCigZmOeZMEgCJIEMz++P7PYXY4Ad2Mnae+f+XFeu7L3Wm6ynr8ndxcpaz2vujoiIxL46QRcgIiKRoUAXEYkTCnQRkTihQBcRiRMKdBGROFEvqAMnJiZ6ampqUIcXEYlJS5Ys2ePubSvbF1igp6amsnjx4qAOLyISk8xs09H26ZKLiEicUKCLiMQJBbqISJxQoIuIxAkFuohInAgr0M1so5llmtmXZvaNW1OszO/NbK2ZZZjZoMiXKiIix1KV2xbPdfc9R9k3CugR+hgKPBv6LCIiNSRSl1wuAaZ7mU+BlmaWFKHvLSISF4pKSnlm0VqWbdlfLd8/3EB34E0zW2Jm4yrZ3xHYUu791tC2rzGzcWa22MwW7969u+rViojEqKxtuVz69Ec8+sYqXs/aWS3HCPeSy3B3325m7YC3zGylu79fbr9V8jXfWDnD3acB0wDS09O1soaIxL3CohL+8M4apr63nlaN6/PsDwYxKq16LmCEFejuvj30OcfMZgNDgPKBvhXoVO59MrA9UkWKiMSixRv3MX5mBut3H+I7pydz10V9adE4odqOd9xAN7MmQB13PxB6fQFwf4Vh84BbzeyvlP0xNNfdd0S8WhGRGHDwcDGPvbGS6Z9uokOLRky/fghn96y0n1ZEhXOGfgow28z+Nf4v7v6Gmd0E4O5TgQXAaGAtkA9cVz3liohEt/dW7+bOWZlszy3gR8NSuf3CXjRpUDN9EI97FHdfD5xayfap5V47cEtkSxMRiR3784/wwGsrmLl0K93aNuHvPxlGemrrGq0hsPa5IiLx4vXMHdw9N5v9+Ue49dzu3Hpedxom1K3xOhToIiInKCevkHvmZvNG9k76d2zOC9cPpl+HFoHVo0AXEakid+fvS7by4GvLKSwuZcLI3tz4rS7UqxtseywFuohIFWzZl8+dszP5YM0ehqS2ZsrlaXRt2zTosgAFuohIWEpKnemfbOSxhasw4IFL+/ODISnUqVPZc5XBUKCLiBzH2pwDjJ+RwdLN+xnRqy0PjU2jY8tGQZf1DQp0EZGjKCop5Y/vreP3/1hL4wZ1+d33TuXSgR0JPZcTdRToIiKVyNyay+0zlrFy5wEuGpDEfRf3I7Fpg6DLOiYFuohIOYVFJTzx9hr+9MF62jSpzx+vOZ0L+7UPuqywKNBFREI+W7+XibMy2bDnEFcO7sQdo/vQolH1NdOKNAW6iNR6BwqL+PUbK3nx0810at2Il24YyvDuiUGXVWUKdBGp1d5dmcOk2ZnsyCvkx2d14b8v6Enj+rEZjbFZtYjISdp36AgPvLac2V9so0e7psy8+UwGpbQKuqyTokAXkVrF3ZmfuYN752aTW1DEz77dg1vO7UaDejXfTCvSFOgiUmvsyivkrjlZvLV8FwOSW/DiDUPpk9Q86LIiRoEuInHP3Xnl8y08tGAFR4pLmTS6D9cNTw28mVakhR3oZlYXWAxsc/cxFfaNAOYCG0KbZrl7xWXqRERq3Oa9+UyclcHH6/YytEtrfn35AFITmwRdVrWoyhn6z4EVwNH+ffJBxaAXEQlKSanz/Ecb+M2bq6hXpw4Pj03jysGdoqqZVqSFFehmlgxcBDwE/KpaKxIROUmrd5U10/pyy37O692Oh8b2J6lF9DXTirRwz9CfAMYDzY4xZpiZLQO2A7e5e3bFAWY2DhgHkJKSUrVKRUSO40hxKc8uWsdT766hWcMEnrxyIBef2iFqm2lF2nED3czGADnuviR0rbwyS4HO7n7QzEYDc4AeFQe5+zRgGkB6erqfYM0iIt+wbMt+xs/IYNWuA1wysAP3jOlLmyhvphVp4ZyhDwcuDgV1Q6C5mb3o7lf/a4C755V7vcDMnjGzRHffE/mSRUT+v4IjJTz+1iqe+3AD7Zo15H9+mM75fU8JuqxAHDfQ3f0O4A74990st5UP89D29sAud3czGwLUAfZGvFoRkXI+WbeXibMy2LQ3n6uGpjBxVG+aN4ydZlqRdsL3oZvZTQDuPhW4ArjZzIqBAuBKd9clFRGpFnmFRTyyYCUv/3Mznds05i83DuXMbrHXTCvSLKjcTU9P98WLFwdybBGJXf9YsYtJs7PIOVDIDd/qyi/P70mj+rH/2H64zGyJu6dXtk9PiopITNh78DD3vbqcecu207t9M/54zemc2qll0GVFFQW6iEQ1d2fesu1MnpfNwcPF/PL8ntw8ohv168XXY/uRoEAXkai1I7eAu2Zn8Y+VOQzs1JJHrxhAz1OO9ThM7aZAF5GoU1rqvPz5Zh5ZsJLi0lLuuqgP1w3vQt04fmw/EhToIhJVNu45xMRZGXy6fh9ndmvDlMsGkNKmcdBlxQQFuohEheKSUv780QZ+++Zq6terw68vT+O76Z1qzWP7kaBAF5HArdiRx4SZGWRszeU/+p7Cg5f255TmDYMuK+Yo0EUkMIeLS3j63XU88+5aWjRK4KmrTuOitCSdlZ8gBbqIBGLp5q+YMCODNTkHGXtaR+4Z05dWTeoHXVZMU6CLSI3KP1LMb99czZ8/2kBS84Y8f+1gzu3dLuiy4oICXURqzEdr9zBxVgZb9hVwzRmdGT+yF81qcTOtSFOgi0i1yy0o4uH5K3hl8Ra6JDbhlXFnMLRrm6DLijsKdBGpVm9m7+SuOVnsPXSEm87pxi/O70HDhNrTTKsmKdBFpFrsPnCYya9mMz9jB32SmvPcjwaTltwi6LLimgJdRCLK3Zn9xTbuf205+YdLuP3CXow7uysJddVMq7op0EUkYrbtL2DS7EwWrdrNoJSyZlrd26mZVk0JO9DNrC6wGNjm7mMq7DPgSWA0kA9c6+5LI1moiESv0lLnpc82MeX1lTgw+T/7cs2wVDXTqmFVOUP/ObACaF7JvlFAj9DHUODZ0GcRiXPrdx9k4sxM/rlxH9/qkcjDY9Po1FrNtIIQVqCbWTJwEfAQ8KtKhlwCTA+tI/qpmbU0syR33xG5UkUkmhSXlPKnDzbwu7dX07BeHR67YgBXnJ6sx/YDFO4Z+hPAeOBoF8M6AlvKvd8a2va1QDezccA4gJSUlKrUKSJRJHt7LhNmZpC1LY+R/dpz/yX9aKdmWoE7bqCb2Rggx92XmNmIow2rZNs3Vp9292nANChbJDr8MkUkGhQWlfCHd9Yw9b31tGpcn2d/MIhRaUlBlyUh4ZyhDwcuNrPRQEOguZm96O5XlxuzFehU7n0ysD1yZYpI0JZs2sf4GRms232Iywclc/eYPrRsrGZa0eS4ge7udwB3AITO0G+rEOYA84BbzeyvlP0xNFfXz0Xiw6HDxTy2cBUvfLKRDi0a8cL1QzinZ9ugy5JKnPB96GZ2E4C7TwUWUHbL4lrKblu8LiLViUig3l+9mztmZbI9t4AfntGZ20f2pmkDPb4Srar0X8bdFwGLQq+nltvuwC2RLExEgpObX8QD85czY8lWurZtwt9+MozBqa2DLkuOQ/9XKyJf80bWDu6em82+Q0e45dxu/PQ8NdOKFQp0EQEg50Ah987N5vWsnfTr0Jz/vW4w/TqomVYsUaCL1HLuzowlW3lw/goKikoYP7IXN35LzbRikQJdpBbbsi+fO2dn8sGaPQxObcWUywfQrW3ToMuSE6RAF6mFSkud6Z9s5NGFqzDg/kv6cfXQztRRM62YpkAXqWXW5hxk4swMFm/6irN7tuXhsf1JbqVmWvFAgS5SSxSVlDLt/fU8+fYaGtWvy2+/cyqXDeqoZlpxRIEuUgtkbctl/IwMlu/IY3Rae+67uD9tmzUIuiyJMAW6SBwrLCrhyX+sYdr762ndpD5Trz6dkf3bB12WVBMFukic+nzjPibMyGD9nkN8Nz2ZSaP70qJxQtBlSTVSoIvEmYOHi3n0jZVM/2QTya0a8eKPh3JWj8Sgy5IaoEAXiSOLVuUwaXYW23MLuG54Krdd0IsmaqZVa+i/tEgc+OrQER6Yv5xZS7fRvV1TZtx0Jqd3bhV0WVLDFOgiMczdWZC5k3vnZbE/v4ifntedW8/rToN6aqZVGynQRWJUTl4hd83J4s3lu0jr2ILp1w+lb4fmQZclAQpnTdGGwPtAg9D4Ge5+b4UxI4C5wIbQplnufn9EKxURoOys/O+Lt/LA/OUcKS7ljlG9+fFZXainZlq1Xjhn6IeB89z9oJklAB+a2evu/mmFcR+4+5jIlygi/7JlXz53zMrkw7V7GNKlNVMuS6OrmmlJSDhrijpwMPQ2IfTh1VmUiHxdSanzwscbeWzhKurWMR68tD9XDUlRMy35mrCuoZtZXWAJ0B142t0/q2TYMDNbBmynbCHp7Eq+zzhgHEBKSsoJFy1Sm6zZdYDxMzP4YvN+RvRqy8Nj0+jQslHQZUkUCivQ3b0EGGhmLYHZZtbf3bPKDVkKdA5dlhkNzAF6VPJ9pgHTANLT03WWL3IMR4pLmfreOp56Zy1NGtTlie8N5JKBHdRMS46qqotE7zezRcBIIKvc9rxyrxeY2TNmlujueyJWqUgtkrF1P+NnZLBy5wHGDEhi8sX9SGyqZlpybOHc5dIWKAqFeSPgfODXFca0B3a5u5vZEKAOsLc6ChaJZ4VFJfzurdX86YP1JDZtwLRrTueCfmqmJeEJ5ww9CXghdB29DvA3d3/NzG4CcPepwBXAzWZWDBQAV4b+mCoiYfp0/V4mzsxg4958vj+kExNH9aFFIzXTkvCFc5dLBnBaJdunlnv9FPBUZEsTqR0OFBYx5fWVvPTZZlJaN+YvNwzlzO5qpiVVpydFRQL0zspdTJqdxa68Qm44qwu/uqAnjevr11JOjH5yRAKw79AR7n81mzlfbqdHu6Y8c/OZnJaiZlpychToIjXI3Xk1YweT52WTV1DEz7/dg/86t5uaaUlEKNBFasjO3LJmWm+v2MWA5BY8euNQerdXMy2JHAW6SDVzd/76+RYenr+CIyWlTBrdh+uGp6qZlkScAl2kGm3ae4iJMzP5ZP1ezujamimXDSA1sUnQZUmcUqCLVIOSUuf5jzbwmzdXkVCnDg+PTePKwZ3UTEuqlQJdJMJW7SxrprVsy36+3bsdD47tT1ILNdOS6qdAF4mQI8WlPLNoLU+/u5ZmDRN48sqBXHyqmmlJzVGgi0TAl1v2M2FGBqt2HeCSgR24Z0xf2qiZltQwBbrISSg4UsLjb63iuQ830K5ZQ/7nh+mc3/eUoMuSWkqBLnKCPl63h4kzM9m8L5+rhqYwcVRvmjdUMy0JjgJdpIryCot4ZMFKXv7nZjq3acxfbhzKmd3UTEuCp0AXqYK3l+9i0pxMdh84zLizu/LL83vSqL4e25fooEAXCcPeg4eZ/OpyXl22nd7tmzHtmnRO7dQy6LJEvkaBLnIM7s68ZduZPC+bg4eL+eX5Pbl5RDfq19Nj+xJ9wlmCriHwPtAgNH6Gu99bYYwBTwKjgXzgWndfGvlyRWrO9v0F3DUni3dW5jCwU0sevWIAPU9pFnRZIkcVzhn6YeA8dz9oZgnAh2b2urt/Wm7MKKBH6GMo8Gzos0jMKS11Xv58M48sWElxaSl3XdSH64Z3oa4e25coF84SdA4cDL1NCH1UXC/0EmB6aOynZtbSzJLcfUdEqxWpZhv2HGLizAw+27CPM7u1YcplA0hp0zjoskTCEtY19NAC0UuA7sDT7v5ZhSEdgS3l3m8NbftaoJvZOGAcQEpKygmWLBJ5xSWlPPfhBh5/azX169ZhymVpfG9wJz22LzElrEB39xJgoJm1BGabWX93zyo3pLKf+opn8bj7NGAaQHp6+jf2iwRhxY48JszMIGNrLuf3OYUHL+1P+xYNgy5LpMqqdJeLu+83s0XASKB8oG8FOpV7nwxsP+nqRKrR4eISnn5nLc8sWkeLRgk8ddVpXJSWpLNyiVnh3OXSFigKhXkj4Hzg1xWGzQNuNbO/UvbH0FxdP5dotnTzV0yYkcGanIOMPa0j94zpS6sm9YMuS+SkhHOGngS8ELqOXgf4m7u/ZmY3Abj7VGABZbcsrqXstsXrqqlekZOSf6SY3yxczfMfb6B984Y8f+1gzu3dLuiyRCIinLtcMoDTKtk+tdxrB26JbGkikfXR2j1MnJXBln0FXH1GChNG9qaZmmlJHNGTohL3cguKeHj+Cl5ZvIUuiU14ZdwZDO3aJuiyRCJOgS5xbWH2Tu6ek8XeQ0e46Zxu/OL8HjRMUDMtiU8KdIlLuw8cZvK8bOZn7qBPUnOe+9Fg0pJbBF2WSLVSoEtccXdmf7GN+19bTv7hEm67oCc/OacbCXXVTEvinwJd4sa2/QVMmp3JolW7GZRS1kyrezs105LaQ4EuMa+01Hnps01MeX0lpQ73/mdffjgsVc20pNZRoEtMW7/7IBNnZvLPjfs4q3sij1yWRqfWaqYltZMCXWJScUkpf/pgA797ezUN69Xh0SsG8J3Tk/XYvtRqCnSJOdnbc5kwM4OsbXlc2O8UHrikP+2aq5mWiAJdYkZhUQl/eGcNU99bT6vG9Xn2B4MYlZYUdFkiUUOBLjFhyaZ9jJ+Rwbrdh7h8UDJ3j+lDy8ZqpiVSngJdotqhw8U8tnAVL3yykQ4tGvHC9UM4p2fboMsSiUoKdIla76/ezR2zMtm2v4AfDevM7SN707SBfmRFjka/HRJ1cvOLeGD+cmYs2UrXtk34+03DGJzaOuiyRKKeAl2iyhtZO7h7bjb7Dh3hv0Z042ffVjMtkXAp0CUq5Bwo5N652byetZO+Sc15/trB9O+oZloiVRHOEnSdgOlAe6AUmObuT1YYMwKYC2wIbZrl7vdHtFKJS+7OjCVbeXD+CgqKSrj9wl6MO7urmmmJnIBwztCLgf9296Vm1gxYYmZvufvyCuM+cPcxkS9R4tWWffncOTuTD9bsIb1zK6ZcPoDu7ZoGXZZIzApnCbodwI7Q6wNmtgLoCFQMdJGwlJY60z/ZyKMLVwFw38X9uOaMztRRMy2Rk1Kla+hmlkrZ+qKfVbJ7mJktA7YDt7l7diVfPw4YB5CSklLlYiX2rc05yMSZGSze9BVn92zLw2P7k9xKzbREIiHsQDezpsBM4Bfunldh91Kgs7sfNLPRwBygR8Xv4e7TgGkA6enpfqJFS+wpKill2vvrefLtNTSqX5fffudULhvUUc20RCIorEA3swTKwvwld59VcX/5gHf3BWb2jJkluvueyJUqsSprWy7jZ2SwfEceo9Pac9/F/WnbrEHQZYnEnXDucjHgOWCFuz9+lDHtgV3u7mY2BKgD7I1opRJzCotKePIfa5j2/npaN6nP1KsHMbK/mmmJVJdwztCHA9cAmWb2ZWjbnUAKgLtPBa4AbjazYqAAuNLddUmlFvt84z4mzMhg/Z5DfOf0ZO66qC8tGicEXZZIXAvnLpcPgWNe6HT3p4CnIlWUxK6Dh4t59I2VTP9kE8mtGvF/Px7Ct3qomZZITdCTohIxi1blMGl2FttzC7hueCq3XdCLJmqmJVJj9NsmJ+2rQ0d4YP5yZi3dRvd2TZlx05mc3rlV0GWJ1DoKdDlh7s7rWTu5Z24W+/OL+Ol53bn1vO40qKdmWiJBUKDLCcnJK+TuuVkszN5FWscWTL9+KH07NA+6LJFaTYEuVeLu/H3xVh6cv5zDxaVMHNWbG87qQj010xIJnAJdwrZlXz53zMrkw7V7GNKlNVMuS6NrWzXTEokWCnQ5rpJS54WPN/LYwlXUrWM8eGl/rhqSomZaIlFGgS7HtGbXASbMzGDp5v2M6NWWh8em0aFlo6DLEpFKKNClUkUlpUxdtI4/vLOWJg3q8sT3BnLJwA5qpiUSxRTo8g2ZW3O5fcYyVu48wJgBSUy+uB+JTdVMSyTaKdDl3wqLSvjd26v50/vrSWzagGnXnM4F/doHXZaIhEmBLgB8tn4vE2dlsmHPIb4/pBMTR/WhRSM10xKJJQr0Wu5AYRG/fmMlL366mZTWjfnLDUM5s3ti0GWJyAlQoNdi767M4c7ZmezKK+SGs7rwqwt60ri+fiREYpV+e2uhfYeOcP+r2cz5cjs92jXlmZvP5LQUNdMSiXXhrFjUCZgOtAdKgWnu/mSFMQY8CYwG8oFr3X1p5MuVk+HuvJaxg8nzssktKOLn3+7Bf53bTc20ROJEOGfoxcB/u/tSM2sGLDGzt9x9ebkxoyhbFLoHMBR4NvRZosSuvEImzc7i7RW7GJDcgpduHErv9mqmJRJPwlmxaAewI/T6gJmtADoC5QP9EmB6aNm5T82spZklhb5WAuTuvPL5Fh5asIKiklImje7DdcNT1UxLJA5V6Rq6maUCpwGfVdjVEdhS7v3W0LavBbqZjQPGAaSkpFSxVKmqTXsPccesTD5et5czurZmymUDSE1sEnRZIlJNwg50M2sKzAR+4e55FXdX8iXfWCTa3acB0wDS09O1iHQ1KSl1nv9oA795cxUJderw0Nj+fH+wmmmJxLuwAt3MEigL85fcfVYlQ7YCncq9Twa2n3x5UlWrdh5g/MwMlm3Zz7d7t+PBsf1JaqFmWiK1QTh3uRjwHLDC3R8/yrB5wK1m9lfK/hiaq+vnNetIcSnPLFrL0++upVnDBJ68ciAXn6pmWiK1SThn6MOBa4BMM/sytO1OIAXA3acCCyi7ZXEtZbctXhfxSuWolm3Zz/gZGazadYBLBnbgnjF9aaNmWiK1Tjh3uXxI5dfIy49x4JZIFSXhKThSwuNvreK5DzfQrllDnvtROt/uc0rQZYlIQPSkaIz6eN0eJs7MZPO+fK4amsLEUb1p3lDNtERqMwV6jMkrLOKRBSt5+Z+b6dymMS/feAbDurUJuiwRiQIK9Bjy9vJdTJqTye4Dhxl3dld+eX5PGtXXY/siUkaBHgP2HjzMfa8uZ96y7fRu34xp16RzaqeWQZclIlFGgR7F3J15y7YzeV42Bw8X86v/6MlN53Sjfj09ti8i36RAj1Lb9xdw15ws3lmZw8BOLXn0igH0PKVZ0GWJSBRToEeZ0lLn5c8388iClZSUOneP6cu1Z6ZSV4/ti8hxKNCjyIY9h5g4M4PPNuxjePc2PDJ2ACltGgddlojECAV6FCguKeXPH23gt2+upn69Ovz68jS+m95Jj+2LSJUo0AO2YkceE2ZmkLE1l//oewoPXtqfU5o3DLosEYlBCvSAHC4u4el31vLMonW0aJTAU1edxkVpSTorF5ETpkAPwNLNXzFhRgZrcg5y2WkduXtMX1o1qR90WSIS4xToNSj/SDG/Wbia5z/eQFLzhjx/3WDO7dUu6LJEJE4o0GvIR2v3MHFWBlv2FXDNGZ0ZP7IXzdRMS0QiSIFezXILinh4/gpeWbyFLolNeGXcGQztqmZaIhJ5CvRqtDB7J3fPyWLvoSPcdE43fnF+DxomqJmWiFSPcJag+zMwBshx9/6V7B8BzAU2hDbNcvf7I1hjzNl94DCT52UzP3MHfZKa89yPBpOW3CLoskQkzoVzhv6/wFPA9GOM+cDdx0Skohjm7sz+Yhv3v7ac/MMl3H5hL8ad3ZWEumqmJSLVL5wl6N43s9QaqCWmbdtfwKTZmSxatZtBKWXNtLq3UzMtEak5kbqGPszMlgHbgdvcPbuyQWY2DhgHkJKSEqFDB6u01Hnps01MeX0lDkz+z75cM0zNtESk5kUi0JcCnd39oJmNBuYAPSob6O7TgGkA6enpHoFjB2rd7oNMnJnB5xu/4ls9Enl4bBqdWquZlogE46QD3d3zyr1eYGbPmFmiu+852e8drYpLSpn2wXqeeHsNDevV4bErBnDF6cl6bF9EAnXSgW5m7YFd7u5mNgSoA+w96cqiVPb2XCbMzCBrWx4j+7Xn/kv70a6ZmmmJSPDCuW3xZWAEkGhmW4F7gQQAd58KXAHcbGbFQAFwpbvH/OWUigqLSvjDO2uY+t56WjWuz7M/GMSotKSgyxIR+bdw7nL5/nH2P0XZbY1xa/HGfUyYmcG63Ye4fFAyd4/pQ8vGaqYlItFFT4oew6HDxTy2cBUvfLKRDi0a8cL1QzinZ9ugyxIRqZQC/SjeX72bO2Zlsj23gB8NS+W2C3vRtIGmS0SilxKqgv35R3hw/gpmLNlK17ZN+PtPhpGe2jroskREjkuBXs7rmTu4e242X+Uf4ZZzu/HT89RMS0RihwIdyMkr5J652byRvZN+HZrzwvWD6ddBzbREJLbU6kB3d2Ys2coDry2nsLiU8SN7ceO31ExLRGJTrQ30LfvyuXN2Jh+s2cPg1FZMuXwA3do2DbosEZETVusCvbTUmf7JRh5duAoDHrikHz8Y2pk6aqYlIjGuVgX62pwDTJiZyZJNX3FOz7Y8NLY/ya3UTEtE4kOtCPSiklL++N46fv+PtTRuUJfHv3sqY0/rqGZaIhJX4j7Qs7blcvuMDFbsyOOitCQmX9yPts0aBF2WiEjExW2gFxaV8MTba/jTB+tp3aQ+U68+nZH92wddlohItYnLQP/nhn1MnJnB+j2H+F56J+4c3YcWjROCLktEpFrFVaAfKCzi0TdW8X+fbiK5VSNe/PFQzuqRGHRZIiI1Im4C/d1VOUyalcmOvEKuH96F2y7sSeP6cfM/T0TkuGI+8b46dIQHXlvOrC+20b1dU2bcdCand24VdFkiIjUunBWL/gyMAXLcvX8l+w14EhgN5APXuvvSSBdakbszP3MH987NJregiJ+d151bzutOg3pqpiUitVM4Z+j/S9mKRNOPsn8U0CP0MRR4NvS52uzKK+TuOVm8uXwXaR1b8OINQ+mT1Lw6DykiEvXCWYLufTNLPcaQS4DpoXVEPzWzlmaW5O47IlVkee+uzOFnf/2CI8Wl3DGqNz8+qwv11ExLRCQi19A7AlvKvd8a2vaNQDezccA4gJSUlBM6WJfEJgxKacXki/vRJbHJCX0PEZF4FIlT28qen/fKBrr7NHdPd/f0tm1PbG3O1MQmvHD9EIW5iEgFkQj0rUCncu+Tge0R+L4iIlIFkQj0ecAPrcwZQG51XT8XEZGjC+e2xZeBEUCimW0F7gUSANx9KrCAslsW11J22+J11VWsiIgcXTh3uXz/OPsduCViFYmIyAnR/X4iInFCgS4iEicU6CIicUKBLiISJ6zsb5oBHNhsN7DpBL88EdgTwXIiJVrrguitTXVVjeqqmnisq7O7V/pkZmCBfjLMbLG7pwddR0XRWhdEb22qq2pUV9XUtrp0yUVEJE4o0EVE4kSsBvq0oAs4imitC6K3NtVVNaqrampVXTF5DV1ERL4pVs/QRUSkAgW6iEiciOpAN7ORZrbKzNaa2cRK9puZ/T60P8PMBkVJXSPMLNfMvgx93FNDdf3ZzHLMLOso+4Oar+PVVePzZWadzOxdM1thZtlm9vNKxtT4fIVZVxDz1dDM/mlmy0J13VfJmCDmK5y6Avl9DB27rpl9YWavVbIv8vPl7lH5AdQF1gFdgfrAMqBvhTGjgdcpWzXpDOCzKKlrBPBaAHN2NjAIyDrK/hqfrzDrqvH5ApKAQaHXzYDVUfLzFU5dQcyXAU1DrxOAz4AzomC+wqkrkN/H0LF/BfylsuNXx3xF8xn6EGCtu6939yPAXylbkLq8fy9Q7e6fAi3NLCkK6gqEu78P7DvGkCDmK5y6apy773D3paHXB4AVlK2FW16Nz1eYddW40BwcDL1NCH1UvKMiiPkKp65AmFkycBHwP0cZEvH5iuZAP9ri01UdE0RdAMNC/wx83cz6VXNN4QpivsIV2HyZWSpwGmVnd+UFOl/HqAsCmK/Q5YMvgRzgLXePivkKoy4I5ufrCWA8UHqU/RGfr2gO9HAWnw57geoICueYSynrt3Aq8AdgTjXXFK4g5iscgc2XmTUFZgK/cPe8irsr+ZIama/j1BXIfLl7ibsPpGzd4CFm1r/CkEDmK4y6any+zGwMkOPuS441rJJtJzVf0Rzo4Sw+HcQC1cc9prvn/eufge6+AEgws8RqriscUbmgd1DzZWYJlIXmS+4+q5IhgczX8eoK+ufL3fcDi4CRFXYF+vN1tLoCmq/hwMVmtpGyy7LnmdmLFcZEfL6iOdA/B3qYWRczqw9cSdmC1OUFsUD1cesys/ZmZqHXQyib573VXFc4onJB7yDmK3S854AV7v74UYbV+HyFU1dA89XWzFqGXjcCzgdWVhgWxHwdt64g5svd73D3ZHdPpSwj3nH3qysMi/h8HXdN0aC4e7GZ3QospOzOkj+7e7aZ3RTaH8gC1WHWdQVws5kVAwXAlR76s3Z1sihd0DuMuoKYr+HANUBm6PorwJ1ASrm6gpivcOoKYr6SgBfMrC5lgfg3d38t6N/HMOsK5PexMtU9X3r0X0QkTkTzJRcREakCBbqISJxQoIuIxAkFuohInFCgi4jECQW6iEicUKCLiMSJ/wcE0L49wqYRpwAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.plot(np.array([1,2,3,4,5]))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a469e9df",
   "metadata": {},
   "source": [
    "## Pandas Series"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "cfc876f0",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[<matplotlib.lines.Line2D at 0x7ffa38028550>]"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAkZ0lEQVR4nO3deXhV5bn+8e8DhHkmIIEQwjwGEQOIWEXrUUCOitrWWm3VKtWjHY8CigPOVFurrQOlx3rkaK0ts4KiVnHWCigZmOeZMEgCJIEMz++P7PYXY4Ad2Mnae+f+XFeu7L3Wm6ynr8ndxcpaz2vujoiIxL46QRcgIiKRoUAXEYkTCnQRkTihQBcRiRMKdBGROFEvqAMnJiZ6ampqUIcXEYlJS5Ys2ePubSvbF1igp6amsnjx4qAOLyISk8xs09H26ZKLiEicUKCLiMQJBbqISJxQoIuIxAkFuohInAgr0M1so5llmtmXZvaNW1OszO/NbK2ZZZjZoMiXKiIix1KV2xbPdfc9R9k3CugR+hgKPBv6LCIiNSRSl1wuAaZ7mU+BlmaWFKHvLSISF4pKSnlm0VqWbdlfLd8/3EB34E0zW2Jm4yrZ3xHYUu791tC2rzGzcWa22MwW7969u+rViojEqKxtuVz69Ec8+sYqXs/aWS3HCPeSy3B3325m7YC3zGylu79fbr9V8jXfWDnD3acB0wDS09O1soaIxL3CohL+8M4apr63nlaN6/PsDwYxKq16LmCEFejuvj30OcfMZgNDgPKBvhXoVO59MrA9UkWKiMSixRv3MX5mBut3H+I7pydz10V9adE4odqOd9xAN7MmQB13PxB6fQFwf4Vh84BbzeyvlP0xNNfdd0S8WhGRGHDwcDGPvbGS6Z9uokOLRky/fghn96y0n1ZEhXOGfgow28z+Nf4v7v6Gmd0E4O5TgQXAaGAtkA9cVz3liohEt/dW7+bOWZlszy3gR8NSuf3CXjRpUDN9EI97FHdfD5xayfap5V47cEtkSxMRiR3784/wwGsrmLl0K93aNuHvPxlGemrrGq0hsPa5IiLx4vXMHdw9N5v9+Ue49dzu3Hpedxom1K3xOhToIiInKCevkHvmZvNG9k76d2zOC9cPpl+HFoHVo0AXEakid+fvS7by4GvLKSwuZcLI3tz4rS7UqxtseywFuohIFWzZl8+dszP5YM0ehqS2ZsrlaXRt2zTosgAFuohIWEpKnemfbOSxhasw4IFL+/ODISnUqVPZc5XBUKCLiBzH2pwDjJ+RwdLN+xnRqy0PjU2jY8tGQZf1DQp0EZGjKCop5Y/vreP3/1hL4wZ1+d33TuXSgR0JPZcTdRToIiKVyNyay+0zlrFy5wEuGpDEfRf3I7Fpg6DLOiYFuohIOYVFJTzx9hr+9MF62jSpzx+vOZ0L+7UPuqywKNBFREI+W7+XibMy2bDnEFcO7sQdo/vQolH1NdOKNAW6iNR6BwqL+PUbK3nx0810at2Il24YyvDuiUGXVWUKdBGp1d5dmcOk2ZnsyCvkx2d14b8v6Enj+rEZjbFZtYjISdp36AgPvLac2V9so0e7psy8+UwGpbQKuqyTokAXkVrF3ZmfuYN752aTW1DEz77dg1vO7UaDejXfTCvSFOgiUmvsyivkrjlZvLV8FwOSW/DiDUPpk9Q86LIiRoEuInHP3Xnl8y08tGAFR4pLmTS6D9cNTw28mVakhR3oZlYXWAxsc/cxFfaNAOYCG0KbZrl7xWXqRERq3Oa9+UyclcHH6/YytEtrfn35AFITmwRdVrWoyhn6z4EVwNH+ffJBxaAXEQlKSanz/Ecb+M2bq6hXpw4Pj03jysGdoqqZVqSFFehmlgxcBDwE/KpaKxIROUmrd5U10/pyy37O692Oh8b2J6lF9DXTirRwz9CfAMYDzY4xZpiZLQO2A7e5e3bFAWY2DhgHkJKSUrVKRUSO40hxKc8uWsdT766hWcMEnrxyIBef2iFqm2lF2nED3czGADnuviR0rbwyS4HO7n7QzEYDc4AeFQe5+zRgGkB6erqfYM0iIt+wbMt+xs/IYNWuA1wysAP3jOlLmyhvphVp4ZyhDwcuDgV1Q6C5mb3o7lf/a4C755V7vcDMnjGzRHffE/mSRUT+v4IjJTz+1iqe+3AD7Zo15H9+mM75fU8JuqxAHDfQ3f0O4A74990st5UP89D29sAud3czGwLUAfZGvFoRkXI+WbeXibMy2LQ3n6uGpjBxVG+aN4ydZlqRdsL3oZvZTQDuPhW4ArjZzIqBAuBKd9clFRGpFnmFRTyyYCUv/3Mznds05i83DuXMbrHXTCvSLKjcTU9P98WLFwdybBGJXf9YsYtJs7PIOVDIDd/qyi/P70mj+rH/2H64zGyJu6dXtk9PiopITNh78DD3vbqcecu207t9M/54zemc2qll0GVFFQW6iEQ1d2fesu1MnpfNwcPF/PL8ntw8ohv168XXY/uRoEAXkai1I7eAu2Zn8Y+VOQzs1JJHrxhAz1OO9ThM7aZAF5GoU1rqvPz5Zh5ZsJLi0lLuuqgP1w3vQt04fmw/EhToIhJVNu45xMRZGXy6fh9ndmvDlMsGkNKmcdBlxQQFuohEheKSUv780QZ+++Zq6terw68vT+O76Z1qzWP7kaBAF5HArdiRx4SZGWRszeU/+p7Cg5f255TmDYMuK+Yo0EUkMIeLS3j63XU88+5aWjRK4KmrTuOitCSdlZ8gBbqIBGLp5q+YMCODNTkHGXtaR+4Z05dWTeoHXVZMU6CLSI3KP1LMb99czZ8/2kBS84Y8f+1gzu3dLuiy4oICXURqzEdr9zBxVgZb9hVwzRmdGT+yF81qcTOtSFOgi0i1yy0o4uH5K3hl8Ra6JDbhlXFnMLRrm6DLijsKdBGpVm9m7+SuOVnsPXSEm87pxi/O70HDhNrTTKsmKdBFpFrsPnCYya9mMz9jB32SmvPcjwaTltwi6LLimgJdRCLK3Zn9xTbuf205+YdLuP3CXow7uysJddVMq7op0EUkYrbtL2DS7EwWrdrNoJSyZlrd26mZVk0JO9DNrC6wGNjm7mMq7DPgSWA0kA9c6+5LI1moiESv0lLnpc82MeX1lTgw+T/7cs2wVDXTqmFVOUP/ObACaF7JvlFAj9DHUODZ0GcRiXPrdx9k4sxM/rlxH9/qkcjDY9Po1FrNtIIQVqCbWTJwEfAQ8KtKhlwCTA+tI/qpmbU0syR33xG5UkUkmhSXlPKnDzbwu7dX07BeHR67YgBXnJ6sx/YDFO4Z+hPAeOBoF8M6AlvKvd8a2va1QDezccA4gJSUlKrUKSJRJHt7LhNmZpC1LY+R/dpz/yX9aKdmWoE7bqCb2Rggx92XmNmIow2rZNs3Vp9292nANChbJDr8MkUkGhQWlfCHd9Yw9b31tGpcn2d/MIhRaUlBlyUh4ZyhDwcuNrPRQEOguZm96O5XlxuzFehU7n0ysD1yZYpI0JZs2sf4GRms232Iywclc/eYPrRsrGZa0eS4ge7udwB3AITO0G+rEOYA84BbzeyvlP0xNFfXz0Xiw6HDxTy2cBUvfLKRDi0a8cL1QzinZ9ugy5JKnPB96GZ2E4C7TwUWUHbL4lrKblu8LiLViUig3l+9mztmZbI9t4AfntGZ20f2pmkDPb4Srar0X8bdFwGLQq+nltvuwC2RLExEgpObX8QD85czY8lWurZtwt9+MozBqa2DLkuOQ/9XKyJf80bWDu6em82+Q0e45dxu/PQ8NdOKFQp0EQEg50Ah987N5vWsnfTr0Jz/vW4w/TqomVYsUaCL1HLuzowlW3lw/goKikoYP7IXN35LzbRikQJdpBbbsi+fO2dn8sGaPQxObcWUywfQrW3ToMuSE6RAF6mFSkud6Z9s5NGFqzDg/kv6cfXQztRRM62YpkAXqWXW5hxk4swMFm/6irN7tuXhsf1JbqVmWvFAgS5SSxSVlDLt/fU8+fYaGtWvy2+/cyqXDeqoZlpxRIEuUgtkbctl/IwMlu/IY3Rae+67uD9tmzUIuiyJMAW6SBwrLCrhyX+sYdr762ndpD5Trz6dkf3bB12WVBMFukic+nzjPibMyGD9nkN8Nz2ZSaP70qJxQtBlSTVSoIvEmYOHi3n0jZVM/2QTya0a8eKPh3JWj8Sgy5IaoEAXiSOLVuUwaXYW23MLuG54Krdd0IsmaqZVa+i/tEgc+OrQER6Yv5xZS7fRvV1TZtx0Jqd3bhV0WVLDFOgiMczdWZC5k3vnZbE/v4ifntedW8/rToN6aqZVGynQRWJUTl4hd83J4s3lu0jr2ILp1w+lb4fmQZclAQpnTdGGwPtAg9D4Ge5+b4UxI4C5wIbQplnufn9EKxURoOys/O+Lt/LA/OUcKS7ljlG9+fFZXainZlq1Xjhn6IeB89z9oJklAB+a2evu/mmFcR+4+5jIlygi/7JlXz53zMrkw7V7GNKlNVMuS6OrmmlJSDhrijpwMPQ2IfTh1VmUiHxdSanzwscbeWzhKurWMR68tD9XDUlRMy35mrCuoZtZXWAJ0B142t0/q2TYMDNbBmynbCHp7Eq+zzhgHEBKSsoJFy1Sm6zZdYDxMzP4YvN+RvRqy8Nj0+jQslHQZUkUCivQ3b0EGGhmLYHZZtbf3bPKDVkKdA5dlhkNzAF6VPJ9pgHTANLT03WWL3IMR4pLmfreOp56Zy1NGtTlie8N5JKBHdRMS46qqotE7zezRcBIIKvc9rxyrxeY2TNmlujueyJWqUgtkrF1P+NnZLBy5wHGDEhi8sX9SGyqZlpybOHc5dIWKAqFeSPgfODXFca0B3a5u5vZEKAOsLc6ChaJZ4VFJfzurdX86YP1JDZtwLRrTueCfmqmJeEJ5ww9CXghdB29DvA3d3/NzG4CcPepwBXAzWZWDBQAV4b+mCoiYfp0/V4mzsxg4958vj+kExNH9aFFIzXTkvCFc5dLBnBaJdunlnv9FPBUZEsTqR0OFBYx5fWVvPTZZlJaN+YvNwzlzO5qpiVVpydFRQL0zspdTJqdxa68Qm44qwu/uqAnjevr11JOjH5yRAKw79AR7n81mzlfbqdHu6Y8c/OZnJaiZlpychToIjXI3Xk1YweT52WTV1DEz7/dg/86t5uaaUlEKNBFasjO3LJmWm+v2MWA5BY8euNQerdXMy2JHAW6SDVzd/76+RYenr+CIyWlTBrdh+uGp6qZlkScAl2kGm3ae4iJMzP5ZP1ezujamimXDSA1sUnQZUmcUqCLVIOSUuf5jzbwmzdXkVCnDg+PTePKwZ3UTEuqlQJdJMJW7SxrprVsy36+3bsdD47tT1ILNdOS6qdAF4mQI8WlPLNoLU+/u5ZmDRN48sqBXHyqmmlJzVGgi0TAl1v2M2FGBqt2HeCSgR24Z0xf2qiZltQwBbrISSg4UsLjb63iuQ830K5ZQ/7nh+mc3/eUoMuSWkqBLnKCPl63h4kzM9m8L5+rhqYwcVRvmjdUMy0JjgJdpIryCot4ZMFKXv7nZjq3acxfbhzKmd3UTEuCp0AXqYK3l+9i0pxMdh84zLizu/LL83vSqL4e25fooEAXCcPeg4eZ/OpyXl22nd7tmzHtmnRO7dQy6LJEvkaBLnIM7s68ZduZPC+bg4eL+eX5Pbl5RDfq19Nj+xJ9wlmCriHwPtAgNH6Gu99bYYwBTwKjgXzgWndfGvlyRWrO9v0F3DUni3dW5jCwU0sevWIAPU9pFnRZIkcVzhn6YeA8dz9oZgnAh2b2urt/Wm7MKKBH6GMo8Gzos0jMKS11Xv58M48sWElxaSl3XdSH64Z3oa4e25coF84SdA4cDL1NCH1UXC/0EmB6aOynZtbSzJLcfUdEqxWpZhv2HGLizAw+27CPM7u1YcplA0hp0zjoskTCEtY19NAC0UuA7sDT7v5ZhSEdgS3l3m8NbftaoJvZOGAcQEpKygmWLBJ5xSWlPPfhBh5/azX169ZhymVpfG9wJz22LzElrEB39xJgoJm1BGabWX93zyo3pLKf+opn8bj7NGAaQHp6+jf2iwRhxY48JszMIGNrLuf3OYUHL+1P+xYNgy5LpMqqdJeLu+83s0XASKB8oG8FOpV7nwxsP+nqRKrR4eISnn5nLc8sWkeLRgk8ddVpXJSWpLNyiVnh3OXSFigKhXkj4Hzg1xWGzQNuNbO/UvbH0FxdP5dotnTzV0yYkcGanIOMPa0j94zpS6sm9YMuS+SkhHOGngS8ELqOXgf4m7u/ZmY3Abj7VGABZbcsrqXstsXrqqlekZOSf6SY3yxczfMfb6B984Y8f+1gzu3dLuiyRCIinLtcMoDTKtk+tdxrB26JbGkikfXR2j1MnJXBln0FXH1GChNG9qaZmmlJHNGTohL3cguKeHj+Cl5ZvIUuiU14ZdwZDO3aJuiyRCJOgS5xbWH2Tu6ek8XeQ0e46Zxu/OL8HjRMUDMtiU8KdIlLuw8cZvK8bOZn7qBPUnOe+9Fg0pJbBF2WSLVSoEtccXdmf7GN+19bTv7hEm67oCc/OacbCXXVTEvinwJd4sa2/QVMmp3JolW7GZRS1kyrezs105LaQ4EuMa+01Hnps01MeX0lpQ73/mdffjgsVc20pNZRoEtMW7/7IBNnZvLPjfs4q3sij1yWRqfWaqYltZMCXWJScUkpf/pgA797ezUN69Xh0SsG8J3Tk/XYvtRqCnSJOdnbc5kwM4OsbXlc2O8UHrikP+2aq5mWiAJdYkZhUQl/eGcNU99bT6vG9Xn2B4MYlZYUdFkiUUOBLjFhyaZ9jJ+Rwbrdh7h8UDJ3j+lDy8ZqpiVSngJdotqhw8U8tnAVL3yykQ4tGvHC9UM4p2fboMsSiUoKdIla76/ezR2zMtm2v4AfDevM7SN707SBfmRFjka/HRJ1cvOLeGD+cmYs2UrXtk34+03DGJzaOuiyRKKeAl2iyhtZO7h7bjb7Dh3hv0Z042ffVjMtkXAp0CUq5Bwo5N652byetZO+Sc15/trB9O+oZloiVRHOEnSdgOlAe6AUmObuT1YYMwKYC2wIbZrl7vdHtFKJS+7OjCVbeXD+CgqKSrj9wl6MO7urmmmJnIBwztCLgf9296Vm1gxYYmZvufvyCuM+cPcxkS9R4tWWffncOTuTD9bsIb1zK6ZcPoDu7ZoGXZZIzApnCbodwI7Q6wNmtgLoCFQMdJGwlJY60z/ZyKMLVwFw38X9uOaMztRRMy2Rk1Kla+hmlkrZ+qKfVbJ7mJktA7YDt7l7diVfPw4YB5CSklLlYiX2rc05yMSZGSze9BVn92zLw2P7k9xKzbREIiHsQDezpsBM4Bfunldh91Kgs7sfNLPRwBygR8Xv4e7TgGkA6enpfqJFS+wpKill2vvrefLtNTSqX5fffudULhvUUc20RCIorEA3swTKwvwld59VcX/5gHf3BWb2jJkluvueyJUqsSprWy7jZ2SwfEceo9Pac9/F/WnbrEHQZYnEnXDucjHgOWCFuz9+lDHtgV3u7mY2BKgD7I1opRJzCotKePIfa5j2/npaN6nP1KsHMbK/mmmJVJdwztCHA9cAmWb2ZWjbnUAKgLtPBa4AbjazYqAAuNLddUmlFvt84z4mzMhg/Z5DfOf0ZO66qC8tGicEXZZIXAvnLpcPgWNe6HT3p4CnIlWUxK6Dh4t59I2VTP9kE8mtGvF/Px7Ct3qomZZITdCTohIxi1blMGl2FttzC7hueCq3XdCLJmqmJVJj9NsmJ+2rQ0d4YP5yZi3dRvd2TZlx05mc3rlV0GWJ1DoKdDlh7s7rWTu5Z24W+/OL+Ol53bn1vO40qKdmWiJBUKDLCcnJK+TuuVkszN5FWscWTL9+KH07NA+6LJFaTYEuVeLu/H3xVh6cv5zDxaVMHNWbG87qQj010xIJnAJdwrZlXz53zMrkw7V7GNKlNVMuS6NrWzXTEokWCnQ5rpJS54WPN/LYwlXUrWM8eGl/rhqSomZaIlFGgS7HtGbXASbMzGDp5v2M6NWWh8em0aFlo6DLEpFKKNClUkUlpUxdtI4/vLOWJg3q8sT3BnLJwA5qpiUSxRTo8g2ZW3O5fcYyVu48wJgBSUy+uB+JTdVMSyTaKdDl3wqLSvjd26v50/vrSWzagGnXnM4F/doHXZaIhEmBLgB8tn4vE2dlsmHPIb4/pBMTR/WhRSM10xKJJQr0Wu5AYRG/fmMlL366mZTWjfnLDUM5s3ti0GWJyAlQoNdi767M4c7ZmezKK+SGs7rwqwt60ri+fiREYpV+e2uhfYeOcP+r2cz5cjs92jXlmZvP5LQUNdMSiXXhrFjUCZgOtAdKgWnu/mSFMQY8CYwG8oFr3X1p5MuVk+HuvJaxg8nzssktKOLn3+7Bf53bTc20ROJEOGfoxcB/u/tSM2sGLDGzt9x9ebkxoyhbFLoHMBR4NvRZosSuvEImzc7i7RW7GJDcgpduHErv9mqmJRJPwlmxaAewI/T6gJmtADoC5QP9EmB6aNm5T82spZklhb5WAuTuvPL5Fh5asIKiklImje7DdcNT1UxLJA5V6Rq6maUCpwGfVdjVEdhS7v3W0LavBbqZjQPGAaSkpFSxVKmqTXsPccesTD5et5czurZmymUDSE1sEnRZIlJNwg50M2sKzAR+4e55FXdX8iXfWCTa3acB0wDS09O1iHQ1KSl1nv9oA795cxUJderw0Nj+fH+wmmmJxLuwAt3MEigL85fcfVYlQ7YCncq9Twa2n3x5UlWrdh5g/MwMlm3Zz7d7t+PBsf1JaqFmWiK1QTh3uRjwHLDC3R8/yrB5wK1m9lfK/hiaq+vnNetIcSnPLFrL0++upVnDBJ68ciAXn6pmWiK1SThn6MOBa4BMM/sytO1OIAXA3acCCyi7ZXEtZbctXhfxSuWolm3Zz/gZGazadYBLBnbgnjF9aaNmWiK1Tjh3uXxI5dfIy49x4JZIFSXhKThSwuNvreK5DzfQrllDnvtROt/uc0rQZYlIQPSkaIz6eN0eJs7MZPO+fK4amsLEUb1p3lDNtERqMwV6jMkrLOKRBSt5+Z+b6dymMS/feAbDurUJuiwRiQIK9Bjy9vJdTJqTye4Dhxl3dld+eX5PGtXXY/siUkaBHgP2HjzMfa8uZ96y7fRu34xp16RzaqeWQZclIlFGgR7F3J15y7YzeV42Bw8X86v/6MlN53Sjfj09ti8i36RAj1Lb9xdw15ws3lmZw8BOLXn0igH0PKVZ0GWJSBRToEeZ0lLn5c8388iClZSUOneP6cu1Z6ZSV4/ti8hxKNCjyIY9h5g4M4PPNuxjePc2PDJ2ACltGgddlojECAV6FCguKeXPH23gt2+upn69Ovz68jS+m95Jj+2LSJUo0AO2YkceE2ZmkLE1l//oewoPXtqfU5o3DLosEYlBCvSAHC4u4el31vLMonW0aJTAU1edxkVpSTorF5ETpkAPwNLNXzFhRgZrcg5y2WkduXtMX1o1qR90WSIS4xToNSj/SDG/Wbia5z/eQFLzhjx/3WDO7dUu6LJEJE4o0GvIR2v3MHFWBlv2FXDNGZ0ZP7IXzdRMS0QiSIFezXILinh4/gpeWbyFLolNeGXcGQztqmZaIhJ5CvRqtDB7J3fPyWLvoSPcdE43fnF+DxomqJmWiFSPcJag+zMwBshx9/6V7B8BzAU2hDbNcvf7I1hjzNl94DCT52UzP3MHfZKa89yPBpOW3CLoskQkzoVzhv6/wFPA9GOM+cDdx0Skohjm7sz+Yhv3v7ac/MMl3H5hL8ad3ZWEumqmJSLVL5wl6N43s9QaqCWmbdtfwKTZmSxatZtBKWXNtLq3UzMtEak5kbqGPszMlgHbgdvcPbuyQWY2DhgHkJKSEqFDB6u01Hnps01MeX0lDkz+z75cM0zNtESk5kUi0JcCnd39oJmNBuYAPSob6O7TgGkA6enpHoFjB2rd7oNMnJnB5xu/4ls9Enl4bBqdWquZlogE46QD3d3zyr1eYGbPmFmiu+852e8drYpLSpn2wXqeeHsNDevV4bErBnDF6cl6bF9EAnXSgW5m7YFd7u5mNgSoA+w96cqiVPb2XCbMzCBrWx4j+7Xn/kv70a6ZmmmJSPDCuW3xZWAEkGhmW4F7gQQAd58KXAHcbGbFQAFwpbvH/OWUigqLSvjDO2uY+t56WjWuz7M/GMSotKSgyxIR+bdw7nL5/nH2P0XZbY1xa/HGfUyYmcG63Ye4fFAyd4/pQ8vGaqYlItFFT4oew6HDxTy2cBUvfLKRDi0a8cL1QzinZ9ugyxIRqZQC/SjeX72bO2Zlsj23gB8NS+W2C3vRtIGmS0SilxKqgv35R3hw/gpmLNlK17ZN+PtPhpGe2jroskREjkuBXs7rmTu4e242X+Uf4ZZzu/HT89RMS0RihwIdyMkr5J652byRvZN+HZrzwvWD6ddBzbREJLbU6kB3d2Ys2coDry2nsLiU8SN7ceO31ExLRGJTrQ30LfvyuXN2Jh+s2cPg1FZMuXwA3do2DbosEZETVusCvbTUmf7JRh5duAoDHrikHz8Y2pk6aqYlIjGuVgX62pwDTJiZyZJNX3FOz7Y8NLY/ya3UTEtE4kOtCPSiklL++N46fv+PtTRuUJfHv3sqY0/rqGZaIhJX4j7Qs7blcvuMDFbsyOOitCQmX9yPts0aBF2WiEjExW2gFxaV8MTba/jTB+tp3aQ+U68+nZH92wddlohItYnLQP/nhn1MnJnB+j2H+F56J+4c3YcWjROCLktEpFrFVaAfKCzi0TdW8X+fbiK5VSNe/PFQzuqRGHRZIiI1Im4C/d1VOUyalcmOvEKuH96F2y7sSeP6cfM/T0TkuGI+8b46dIQHXlvOrC+20b1dU2bcdCand24VdFkiIjUunBWL/gyMAXLcvX8l+w14EhgN5APXuvvSSBdakbszP3MH987NJregiJ+d151bzutOg3pqpiUitVM4Z+j/S9mKRNOPsn8U0CP0MRR4NvS52uzKK+TuOVm8uXwXaR1b8OINQ+mT1Lw6DykiEvXCWYLufTNLPcaQS4DpoXVEPzWzlmaW5O47IlVkee+uzOFnf/2CI8Wl3DGqNz8+qwv11ExLRCQi19A7AlvKvd8a2vaNQDezccA4gJSUlBM6WJfEJgxKacXki/vRJbHJCX0PEZF4FIlT28qen/fKBrr7NHdPd/f0tm1PbG3O1MQmvHD9EIW5iEgFkQj0rUCncu+Tge0R+L4iIlIFkQj0ecAPrcwZQG51XT8XEZGjC+e2xZeBEUCimW0F7gUSANx9KrCAslsW11J22+J11VWsiIgcXTh3uXz/OPsduCViFYmIyAnR/X4iInFCgS4iEicU6CIicUKBLiISJ6zsb5oBHNhsN7DpBL88EdgTwXIiJVrrguitTXVVjeqqmnisq7O7V/pkZmCBfjLMbLG7pwddR0XRWhdEb22qq2pUV9XUtrp0yUVEJE4o0EVE4kSsBvq0oAs4imitC6K3NtVVNaqrampVXTF5DV1ERL4pVs/QRUSkAgW6iEiciOpAN7ORZrbKzNaa2cRK9puZ/T60P8PMBkVJXSPMLNfMvgx93FNDdf3ZzHLMLOso+4Oar+PVVePzZWadzOxdM1thZtlm9vNKxtT4fIVZVxDz1dDM/mlmy0J13VfJmCDmK5y6Avl9DB27rpl9YWavVbIv8vPl7lH5AdQF1gFdgfrAMqBvhTGjgdcpWzXpDOCzKKlrBPBaAHN2NjAIyDrK/hqfrzDrqvH5ApKAQaHXzYDVUfLzFU5dQcyXAU1DrxOAz4AzomC+wqkrkN/H0LF/BfylsuNXx3xF8xn6EGCtu6939yPAXylbkLq8fy9Q7e6fAi3NLCkK6gqEu78P7DvGkCDmK5y6apy773D3paHXB4AVlK2FW16Nz1eYddW40BwcDL1NCH1UvKMiiPkKp65AmFkycBHwP0cZEvH5iuZAP9ri01UdE0RdAMNC/wx83cz6VXNN4QpivsIV2HyZWSpwGmVnd+UFOl/HqAsCmK/Q5YMvgRzgLXePivkKoy4I5ufrCWA8UHqU/RGfr2gO9HAWnw57geoICueYSynrt3Aq8AdgTjXXFK4g5iscgc2XmTUFZgK/cPe8irsr+ZIama/j1BXIfLl7ibsPpGzd4CFm1r/CkEDmK4y6any+zGwMkOPuS441rJJtJzVf0Rzo4Sw+HcQC1cc9prvn/eufge6+AEgws8RqriscUbmgd1DzZWYJlIXmS+4+q5IhgczX8eoK+ufL3fcDi4CRFXYF+vN1tLoCmq/hwMVmtpGyy7LnmdmLFcZEfL6iOdA/B3qYWRczqw9cSdmC1OUFsUD1cesys/ZmZqHXQyib573VXFc4onJB7yDmK3S854AV7v74UYbV+HyFU1dA89XWzFqGXjcCzgdWVhgWxHwdt64g5svd73D3ZHdPpSwj3nH3qysMi/h8HXdN0aC4e7GZ3QospOzOkj+7e7aZ3RTaH8gC1WHWdQVws5kVAwXAlR76s3Z1sihd0DuMuoKYr+HANUBm6PorwJ1ASrm6gpivcOoKYr6SgBfMrC5lgfg3d38t6N/HMOsK5PexMtU9X3r0X0QkTkTzJRcREakCBbqISJxQoIuIxAkFuohInFCgi4jECQW6iEicUKCLiMSJ/wcE0L49wqYRpwAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.plot(pd.Series([1,2,3,4,5]))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f7ce804c",
   "metadata": {},
   "source": [
    "## Pandas Dataframe"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c22745f8",
   "metadata": {},
   "source": [
    "- In case of Dataframe\n",
    "    - Each column will be plotted as separate line\n",
    "    - Index of Dataframe becomes x axis"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "e8201850",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>0</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>10</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>20</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>30</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>40</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>50</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "    0\n",
       "0  10\n",
       "1  20\n",
       "2  30\n",
       "3  40\n",
       "4  50"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "col = [10,20,30,40,50]\n",
    "df=pd.DataFrame(data=col)\n",
    "df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "18746430",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[<matplotlib.lines.Line2D at 0x7ffa28035c10>]"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAjzElEQVR4nO3deXxU9dn+8c8NhH2TPSwh7FsICGFRrMWtolIUqa0+dV/Q9rGrPyFuFYsL+Gipj621uFWtrVoWQURcUKRaF8BKEvZ9DQk7YQkkmfv3R8Y+lAaZwEzOTHK9Xy9eTM6cMFe/jFcPJ3PuY+6OiIgknmpBBxARkZOjAhcRSVAqcBGRBKUCFxFJUCpwEZEEVaMiX6xZs2aemppakS8pIpLwFi1atMPdmx+7vUILPDU1lYULF1bkS4qIJDwz21DWdp1CERFJUCpwEZEEpQIXEUlQKnARkQSlAhcRSVARfQrFzNYDBUAJUOzuGWbWBHgNSAXWA993992xiSkiIscqzxH4Oe7e190zwl9nAnPdvQswN/y1iIhUkFM5hXIp8GL48YvAZaecRkSkktl94AgPvLmEfYVFUf+zIy1wB941s0VmNjq8raW75wKEf29R1jea2WgzW2hmC7dv337qiUVEEoC781ZWLhdM+oiXP93AF2t3Rf01Ir0Sc4i7bzWzFsB7ZrY80hdw98nAZICMjAzdPUJEKr28fYXc90YO7y7No3ebRrx80yB6JDeM+utEVODuvjX8e76ZTQcGAnlmluzuuWaWDORHPZ2ISAJxd15fuIkH31rGkeIQd13UnZvO6kCN6rH5wN8JC9zM6gHV3L0g/Pg7wK+BmcB1wITw7zNiklBEJAFs3HmQu6Zn8cnqnQzs0ISJo9Lp0KxeTF8zkiPwlsB0M/t6/7+4+xwzWwC8bmY3ARuBK2IXU0QkPpWEnD/9Yz2PvbOC6tWMBy9L478GplCtmsX8tU9Y4O6+FuhTxvadwHmxCCUikghW5RUwZmoW/9y4h3O6Neehkb1p3bhOhb1+hY6TFRGpDI4Uh3j6ozX87oPV1KtVnSeu7MuIPq0Jn6moMCpwEZFyWLxpD2OnZrF8WwHf7dOacd/tSdP6tQLJogIXEYnAoSMl/Pb9lTzz97U0b1CLZ67N4IKeLQPNpAIXETmBz9buJHNqFut3HuSqge246+IeNKydFHQsFbiIyPEUFBYx4e3lvPL5RlKa1OUvNw/izM7Ngo71LypwEZEyfLA8j3um55C3r5BbvtWBX17QjTo1qwcd69+owEVEjrJz/2F+PWspM77aSreWDfjD1f3p265x0LHKpAIXEaH0Mvg3s3IZN3MJBYVF/Pz8Lvx4aGdq1ojf+96owEWkytu2t5B738jm/WX59GnXmEdHpdOtVYOgY52QClxEqix359UFm3j4rWUUhULce0kPbhjSgeoVcBl8NKjARaRKWr/jAHdNy+bTtTs5o2NTJozqTfumsR0+FW0qcBGpUkpCzvMfr+Px91aQVK0aEy7vzQ8GtKvwy+CjQQUuIlXGim0FjJmymMWb93J+jxY8eFlvWjWqHXSsk6YCF5FK70hxiN9/uJqn5q2mYe0knrzqdIanJyfkUffRVOAiUql9tWkPY6YsZmXefi7r25pffbcXTerVDDpWVKjARaRSOnikmN+8u5LnP1lHy4a1ef76DM7tHuzwqWiLuMDNrDqwENji7sPNbBxwC/D1rebvdvfZ0Y8oIlI+/1i9g8xp2WzcdZCrB6cwdlh3GsTB8KloK88R+M+AZcDRt1ae5O6PRTeSiMjJ2XuoiEdmL+PVBZtIbVqXV0cPZnDHpkHHipmICtzM2gKXAA8Bv4xpIhGRk/De0jzufSOb7QWHufXbHfnF+V2pnRRfw6eiLdIj8N8CY4Bjry293cyupfTUyh3uvvvYbzSz0cBogJSUlJNPKiJShh37DzNu5hJmZeXSvVUDnrk2g/S2jYOOVSFOOKXFzIYD+e6+6Jin/gB0AvoCucDjZX2/u0929wx3z2jevPkpxhURKeXuvPHPLVzwm494d0ked1zQlTd/claVKW+I7Ah8CDDCzC4GagMNzezP7n711zuY2TPArBhlFBH5N1v3HOKe6dl8uGI7p6eUDp/q0jL+h09F2wkL3N3vAu4CMLOhwP9z96vNLNndc8O7jQRyYhVSRAQgFHJe+WIjE99eTknI+dXwnlx3ZmrCDJ+KtlP5HPijZtYXcGA9cGs0AomIlGXdjgOMnZrFF+t2cVbnZjxyeW/aNakbdKxAlavA3X0eMC/8+JoY5BER+TfFJSGe/Xgdk95bSa0a1Xj0e+lc0b9twl8GHw26ElNE4tbSrfsYOzWL7C17ubBXS8ZfmkaLhok7fCraVOAiEncOF5fwuw9W84d5a2hcN4mnftiPi9Ja6aj7GCpwEYkrizbsZuzULFbn7+fyfm2475KenFZJhk9FmwpcROLCgcPFPPbuCv70j/W0blSHP90wgKHdWgQdK66pwEUkcH9ftZ27pmWzefchrjujPXcO6079WqqnE9EKiUhg9h4s4sG3lvK3RZvp2Lwef7vtDAakNgk6VsJQgYtIIObkbOO+GTnsOnCEHw/txE/P61Lph09FmwpcRCpUfkEh42YuYXb2NnomN+SF6weQ1qZR0LESkgpcRCqEuzPtyy38etZSDhWVcOeF3Rh9dkeSqp9wpp4chwpcRGJu8+6D3D09h/krt5PR/jQmjEqnc4v6QcdKeCpwEYmZUMh5+bMNTJyzHIAHRvTimsHtqVZFh09FmwpcRGJizfb9jJ2SxcINuzm7a3MeHplG29Oq9vCpaFOBi0hUFZWEmDx/LU/MXUWdpOo8dkUfRvVro8vgY0AFLiJRk7NlL2OnZrFk6z4u7t2KcSN60aKBhk/FigpcRE5ZYVEJ/zt3FX+cv5Ym9Wry9NX9GJaWHHSsSk8FLiKnZMH6XYydksXaHQe4on9b7r2kJ43qJgUdq0qIuMDNrDqld5/f4u7DzawJ8BqQSukdeb5f1l3pRaRy2n+4mEfnLOelTzfQ9rQ6vHzTQL7VRTcur0jl+QT9z4BlR32dCcx19y7A3PDXIlIFfLRyOxdOms/Ln23g+jNTeefnZ6u8AxDREbiZtQUuAR4CfhnefCkwNPz4RUpvtTY2uvFEJJ7sOXiE8bOWMfXLzXRqXo8pt51B//YaPhWUSE+h/BYYAzQ4alvLr+9K7+65Zlbm4F4zGw2MBkhJSTn5pCISGHfn7Zxt/GpGDnsOFnH7OZ35yXmdqVVDw6eCdMICN7PhQL67LzKzoeV9AXefDEwGyMjI8PJ+v4gEK39fIffNyOGdJXn0btOIl24cRM/WDYOOJUR2BD4EGGFmFwO1gYZm9mcgz8ySw0ffyUB+LIOKSMVyd/62aDMPzlrK4eIQmRd15+azOlBDw6fixgn/Jtz9Lndv6+6pwJXAB+5+NTATuC6823XAjJilFJEKtWnXQa557gvGTMmie6uGvP2zb3HbtzupvOPMqXwOfALwupndBGwErohOJBEJSknIeenT9Tw6ZwXVDMZflsYPB6Zo+FScKleBu/s8Sj9tgrvvBM6LfiQRCcLq/ALGTMniy417GNqtOQ+N7E2bxnWCjiXfQFdiilRxRSUhnp63hic/WE29WtWZ9IM+XNZXw6cSgQpcpArL3ryXO6csZvm2AoanJzNuRC+a1a8VdCyJkApcpAoqLCph0vsreWb+WprVr8Xka/rznV6tgo4l5aQCF6liPl+7k8xp2azbcYArB7Tjrot70KiOhk8lIhW4SBVRUFjExDnL+fNnG2nXpA6v3DyIIZ2bBR1LToEKXKQK+HB5PvdMzyZ3XyE3ndWBO77Tlbo19Z9/otPfoEgltuvAEcbPWsr0f26hS4v6TP3RmfRLOS3oWBIlKnCRSsjdmZWVy7iZS9h7qIifnteF/z6nk4ZPVTIqcJFKJm9fIfdMz+H9ZXmkt23En28eRI9kDZ+qjFTgIpWEu/Pagk08NHsZR4pD3HNxD24Ykqr5JZWYClykEti48yCZ07L4x5qdDOrQhImj0kltVi/oWBJjKnCRBFYScl74ZB2PvbuCGtWq8fDI3lw5oJ2GT1URKnCRBLViWwFjp2bx1aY9nNu9BQ+NTCO5kYZPVSUqcJEEc6Q4xFPzVvP7D1fToHYST1zZlxF9Wmv4VBWkAhdJIIs37WHMlCxW5BUwok9r7v9uT5pq+FSVFck9MWsD84Fa4f2nuPv9ZjYOuAXYHt71bnefHaugIlXZoSMl/Oa9FTz38TpaNKjNs9dmcH7PlkHHkoBFcgR+GDjX3febWRLwsZm9HX5ukrs/Frt4IvLpmp1kTstiw86D/NegFDIv6k7D2ho+JREUuLs7sD/8ZVL4l+4uLxJj+wqLeGT2cv76xUbaN63LX24ZxJmdNHxK/k9En/A3s+pm9hWld55/z90/Dz91u5llmdnzZlbmgAUzG21mC81s4fbt28vaRUSO8f7SPL7zm/m8tmAjo8/uyJyfna3ylv9gpQfYEe5s1hiYDvyE0nPfOyg9Gh8PJLv7jd/0/RkZGb5w4cKTDitS2e3cf5gH3lzKzMVb6dayARO/l07fdo2DjiUBM7NF7p5x7Pby3tR4j5nNA4Ydfe7bzJ4BZp1ySpEqyt2ZuXgr42YuYf/hYn5xfld+NLQTNWvoMng5vkg+hdIcKAqXdx3gfGCimSW7e254t5FATgxzilRauXsPce/0HOYuz6dPu8Y8Oiqdbq0aBB1LEkAkR+DJwItmVp3Sc+avu/ssM3vZzPpSegplPXBrzFKKVEKhkPPXBRt5ZPZyikMh7r2kBzcM6UB1XQYvEYrkUyhZwOllbL8mJolEqoD1Ow6QOS2Lz9bu4sxOTZlweTopTesGHUsSjK7EFKlAxSUhnv9kHY+/u5Ka1asx4fLe/GBAO10GLydFBS5SQZbl7mPs1CyyNu/l/B4tefCyNFo1qh10LElgKnCRGDtcXMLvP1zDUx+uplGdJJ686nSGpyfrqFtOmQpcJIa+3LibsVOyWJW/n5Gnt+G+4T1pUq9m0LGkklCBi8TAwSPFPP7uSp7/ZB2tGtbm+eszOLe7hk9JdKnARaLsk9U7yJyWxaZdh7h6cApjh3WngYZPSQyowEWiZO+hIh6ZvYxXF2yiQ7N6vDZ6MIM6Ng06llRiKnCRKHh3yTbufSOHHfsPc+u3O/KL87tSO6l60LGkklOBi5yC7QWHGffmEt7KyqV7qwY8e10G6W0bBx1LqggVuMhJcHfe+GoLD7y5lIOHS7jjgq7cNrQTSdU1fEoqjgpcpJy27DnEPdOzmbdiO6enlA6f6tJSw6ek4qnARSIUCjmvfLGRCbOXEXL41fCeXHdmqoZPSWBU4CIRWLt9P5lTs/li/S7O6tyMRy7vTbsmGj4lwVKBi3yD4pIQz/x9HZPeX0ntGtV49HvpXNG/rS6Dl7igAhc5jqVb9zFm6mJytuzjwl4tGX9pGi0aaviUxA8VuMgxCotK+N0Hq3n6ozU0rpvEUz/sx0VprXTULXEnkluq1QbmA7XC+09x9/vNrAnwGpBK6R15vu/uu2MXVST2Fm3YxZgpWazZfoDL+7Xhvkt6cpqGT0mciuQI/DBwrrvvN7Mk4GMzexu4HJjr7hPMLBPIBMbGMKtIzBw4XMz/vLOCFz9dT+tGdfjTDQMY2q1F0LFEvlEkt1RzYH/4y6TwLwcuBYaGt78IzEMFLgno76u2c9e0bDbvPsS1Z7RnzLDu1K+ls4sS/yJ6l4ZvaLwI6Az83t0/N7OWX9+V3t1zzazMwxUzGw2MBkhJSYlOapEo2HuwiPFvLWXKos10bFaP1289g4EdmgQdSyRiERW4u5cAfc2sMTDdzNIifQF3nwxMBsjIyPCTCSkSbXNycrlvxhJ2HTjCj4d24qfnddHwKUk45fp3orvvMbN5wDAgz8ySw0ffyUB+LAKKRFN+QSH3z1jC2znb6JnckBeuH0Bam0ZBxxI5KZF8CqU5UBQu7zrA+cBEYCZwHTAh/PuMWAYVORXuztQvtzB+1lIOFZVw54XdGH12Rw2fkoQWyRF4MvBi+Dx4NeB1d59lZp8Cr5vZTcBG4IoY5hQ5aZt3H+Tu6TnMX7md/u1PY+KodDq3qB90LJFTFsmnULKA08vYvhM4LxahRKIhFHJe/mwDE+csB+CBEb24ZnB7qmn4lFQS+qyUVEqr8/eTOTWLhRt2860uzXh4pIZPSeWjApdKpagkxOT5a3ni/VXUqVmdx67ow6h+bXQZvFRKKnCpNHK27GXMlCyW5u7j4t6tGDeiFy0aaPiUVF4qcEl4hUUlPDF3FZPnr+W0ujV5+up+DEtLDjqWSMypwCWhLVi/i7FTsli74wBX9G/LvZf0pFHdpKBjiVQIFbgkpP2Hi3l0znJe+nQDbRrX4aUbB3J21+ZBxxKpUCpwSTgfrdzO3dOy2br3ENefmcqdF3ajnoZPSRWkd70kjN0HjjD+raVM+3ILnZrXY8ptZ9C/vYZPSdWlApe45+68nbONX83IYc/BIm4/pzO3n9tZw6ekylOBS1zL31fIfTNyeGdJHmltGvLijQPp1VrDp0RABS5xyt3526LNPDhrKYXFIcYO684t3+pADQ2fEvkXFbjEnU27DnLXtGw+Xr2DgalNmDCqNx2ba/iUyLFU4BI3SkLOS5+u59E5K6hmMP7SXvxwkIZPiRyPClziwur8AsZMyeLLjXsY2q05D43sTZvGdYKOJRLXVOASqKKSEH/8aA3/O3c1dWtVZ9IP+nBZXw2fEomEClwCk715L3dOWczybQVckp7MAyN60ax+raBjiSSMSG6p1g54CWgFhIDJ7v6EmY0DbgG2h3e9291nxyqoVB6FRSVMen8lz8xfS7P6tfjjNf25sFeroGOJJJxIjsCLgTvc/UszawAsMrP3ws9NcvfHYhdPKpvP1+4kc1o263Yc4AcZ7bj7kh40qqPhUyInI5JbquUCueHHBWa2DGgT62BSuRQUFjFxznL+/NlG2jWpwys3D2JI52ZBxxJJaOU6B25mqZTeH/NzYAhwu5ldCyyk9Ch9dxnfMxoYDZCSknKqeSUBfbg8n3umZ5O7r5CbzurAHd/pSt2a+vGLyKkyd49sR7P6wEfAQ+4+zcxaAjsAB8YDye5+4zf9GRkZGb5w4cJTjCyJYteBI4yftZTp/9xClxb1mfi9dPqlnBZ0LJGEY2aL3D3j2O0RHQaZWRIwFXjF3acBuHveUc8/A8yKUlZJcO7OW9m53D9jCXsPFfHT87rw3+d0olYNDZ8SiaZIPoViwHPAMnf/zVHbk8PnxwFGAjmxiSiJJG9fIfe+kcN7S/NIb9uIP988iB7JDYOOJVIpRXIEPgS4Bsg2s6/C2+4GrjKzvpSeQlkP3BqDfJIg3J3XFmziodnLOFIc4u6Lu3PjEA2fEomlSD6F8jFQ1mVx+sy3ALBx50Eyp2XxjzU7GdShCRNHpZParF7QsUQqPX0UQE5aSch54ZN1PPbuCmpUq8ZDI9O4akCKhk+JVBAVuJyUlXmlw6e+2rSHc7u34KGRaSQ30vApkYqkApdyOVIc4g/z1vC7D1fRoHYST1zZlxF9Wmv4lEgAVOASscWb9jB2ahbLtxUwok9r7v9uT5pq+JRIYFTgckKHjpQOn3r272tp0aA2z16bwfk9WwYdS6TKU4HLN/p0zU4yp2WxYedB/mtQCpkXdadhbQ2fEokHKnAp077CIh6ZvZy/frGR9k3r8pdbBnFmJw2fEoknKnD5D3OX5XHP9BzyCwoZfXZHfnF+V+rU1GXwIvFGBS7/snP/YR54cykzF2+lW8sGPH1Nf/q2axx0LBE5DhW44O7MXLyVB95cSkFhEb84vys/GtqJmjV0GbxIPFOBV3G5ew9x7/Qc5i7Pp0+7xjw6Kp1urRoEHUtEIqACr6JCIefVBZt4ZPYyikIh7r2kBzcM6UB1XQYvkjBU4FXQ+h0HyJyWxWdrd3Fmp6ZMuDydlKZ1g44lIuWkAq9CiktCPP/JOh5/dyU1q1djwuW9+cGAdroMXiRBqcCriOXb9jF2ShaLN+/l/B4tefCyNFo1qh10LBE5BZHckacd8BLQCggBk939CTNrArwGpFJ6Q4fvl3VTYwnW4eISfv/hGp76cDWN6iTx5FWnMzw9WUfdIpVAJEfgxZTecf5LM2sALDKz94DrgbnuPsHMMoFMYGzsokp5/XPjbsZOzWJl3n5Gnt6G+4b3pEm9mkHHEpEoieSOPLlAbvhxgZktA9oAlwJDw7u9CMxDBR4XDh4p5vF3V/L8J+to1bA2L1w/gHO6twg6lohEWbnOgZtZKnA68DnQ8uubGrt7rpmV2RBmNhoYDZCSknJKYeXE/rF6B5nTstm46yBXD05h7LDuNNDwKZFKKeICN7P6wFTg5+6+L9JzqO4+GZgMkJGR4ScTUk5s76EiHpm9jFcXbKJDs3q8Onowgzs2DTqWiMRQRAVuZkmUlvcr7j4tvDnPzJLDR9/JQH6sQso3e3fJNu59I4cd+w9z67dLh0/VTtLwKZHKLpJPoRjwHLDM3X9z1FMzgeuACeHfZ8QkoRzXjv2HGTdzCbOycuneqgHPXpdBetvGQccSkQoSyRH4EOAaINvMvgpvu5vS4n7dzG4CNgJXxCSh/Ad3542vtvDAm0s5eLiEOy7oym1DO5FUXcOnRKqSSD6F8jFwvBPe50U3jpzI1j2HuGd6Nh+u2E6/lMZMHJVOl5YaPiVSFelKzAQRCjmvfLGRCbOXEXK4/7s9ufaMVA2fEqnCVOAJYO32/WROzeaL9bs4q3MzHrm8N+2aaPiUSFWnAo9jxSUhnv14HZPeW0mtGtV49HvpXNG/rS6DFxFABR63lm7dx5ipi8nZso8Le7Vk/KVptGio4VMi8n9U4HHmcHEJv/tgNX+Yt4bGdZN46of9uCitlY66ReQ/qMDjyKINuxgzJYs12w8wql9b7hveg8Z1NXxKRMqmAo8DBw4X8z/vrODFT9fTulEdXrxxIN/u2jzoWCIS51TgAfv7qu3cNS2bzbsPcd0Z7blzWHfq19Jfi4icmJoiIHsPFvHgW0v526LNdGxej7/ddgYDUpsEHUtEEogKPABzcnK5b8YSdh04wo+HduKn53XR8CkRKTcVeAXKLyjk/hlLeDtnGz2TG/LC9QNIa9Mo6FgikqBU4BXA3Zn65RbGz1rKoaIS7rywG6PP7qjhUyJySlTgMbZ590Hunp7D/JXbyWh/GhNGpdO5Rf2gY4lIJaACj5FQyHn5sw1MnLMcgAdG9OKawe2ppuFTIhIlKvAYWJ2/n8ypWSzcsJuzuzbn4ZFptD1Nw6dEJLpU4FFUVBJi8vy1PPH+KurUrM7jV/Th8n5tdBm8iMREJLdUex4YDuS7e1p42zjgFmB7eLe73X12rEImgpwtexkzJYulufu4uHcrHhiRRvMGtYKOJSKVWCRH4H8Cfge8dMz2Se7+WNQTJZjCohKemLuKyfPX0qReTZ6+uh/D0pKDjiUiVUAkt1Sbb2apFZAl4SxYv4uxU7JYu+MAV/Rvy72X9KRR3aSgY4lIFXEq58BvN7NrgYXAHe6+u6ydzGw0MBogJSXlFF4ufuw/XMyjc5bz0qcbaHtaHV6+aSDf6qLhUyJSsU72SpI/AJ2AvkAu8PjxdnT3ye6e4e4ZzZsnfsnNW5HPhZPm8/JnG7hhSCrv/PxslbeIBOKkjsDdPe/rx2b2DDAraoni1O4DRxj/1lKmfbmFzi3qM+W2M+nf/rSgY4lIFXZSBW5mye6eG/5yJJATvUjxxd15O2cbv5qRw56DRfzk3M7cfm5natXQ8CkRCVYkHyP8KzAUaGZmm4H7gaFm1hdwYD1wa+wiBid/XyH3zcjhnSV59G7TiJduHETP1g2DjiUiAkT2KZSrytj8XAyyxA13528LN/PgW0s5XBwi86Lu3HxWB2po+JSIxBFdiXmMTbsOcte0bD5evYOBqU2YMKo3HZtr+JSIxB8VeFhJyHnxH+v5n3dWUL2aMf6yNH44MEXDp0QkbqnAgVV5BYydmsWXG/cwtFtzHh7Zm9aN6wQdS0TkG1XpAj9SHOKPH63hyQ9WU69WdX77g75c2re1hk+JSEKosgWetXkPY6ZksXxbAcPTkxk3ohfN6mv4lIgkjipX4IVFJUx6byXP/H0tzerXYvI1/flOr1ZBxxIRKbcqVeCfrd1J5tQs1u88yFUD25F5UQ8a1dHwKRFJTFWiwAsKi5jw9nJe+XwjKU3q8pebB3Fm52ZBxxIROSWVvsA/WJ7HPdNzyNtXyM1ndeCX3+lK3ZqV/n+2iFQBlbbJdh04wq/fXMIbX22lS4v6PPWjMzk9RcOnRKTyqHQF7u68mZXLuJlL2HeoiJ+d14Ufn9NJw6dEpNKpVAW+bW8h976Rw/vL8khv24hHbxlE91YaPiUilVOlKHB359UFm3j4rWUUhULcc3EPbhiSquFTIlKpJXyBb9h5gMyp2Xy6dieDOzZhwuXppDarF3QsEZGYS9gCLwk5L3yyjsfeXUFStWo8PLI3Vw5op+FTIlJlJGSBr9hWwJipWSzetIfzurfgwZFpJDfS8CkRqVoiuSPP88BwIN/d08LbmgCvAamU3pHn+8e7K300HSkO8dS81fz+w9U0qJ3EE1f2ZUQfDZ8Skaopkp/y/QkYdsy2TGCuu3cB5oa/jqmvNu3hu09+zG/fX8XFvZN57xdnc2nfNipvEamyIrml2nwzSz1m86WU3icT4EVgHjA2msGO9uTcVUx6fyUtGtTmuesyOK9Hy1i9lIhIwjjZc+Atv74rvbvnmlmL4+1oZqOB0QApKSkn9WIpTety5cAUMi/qTsPaGj4lIgJg7n7inUqPwGcddQ58j7s3Pur53e5+wuvUMzIyfOHChSefVkSkCjKzRe6ecez2k73SJc/MksN/cDKQfyrhRESk/E62wGcC14UfXwfMiE4cERGJ1AkL3Mz+CnwKdDOzzWZ2EzABuMDMVgEXhL8WEZEKFMmnUK46zlPnRTmLiIiUg6Y9iYgkKBW4iEiCUoGLiCQoFbiISIKK6EKeqL2Y2XZgw0l+ezNgRxTjRItylY9ylY9ylU+85oJTy9be3Zsfu7FCC/xUmNnCsq5ECppylY9ylY9ylU+85oLYZNMpFBGRBKUCFxFJUIlU4JODDnAcylU+ylU+ylU+8ZoLYpAtYc6Bi4jIv0ukI3ARETmKClxEJEHFXYGb2TAzW2Fmq83sP+61aaX+N/x8lpn1i5NcQ81sr5l9Ff71qwrI9LyZ5ZtZznGeD2qtTpSrwtcq/LrtzOxDM1tmZkvM7Gdl7FPhaxZhriDeX7XN7AszWxzO9UAZ+wSxXpHkCuQ9Fn7t6mb2TzObVcZz0V0vd4+bX0B1YA3QEagJLAZ6HrPPxcDbgAGDgc/jJNdQSu9aVJHrdTbQD8g5zvMVvlYR5qrwtQq/bjLQL/y4AbAyTt5fkeQK4v1lQP3w4yTgc2BwHKxXJLkCeY+FX/uXwF/Kev1or1e8HYEPBFa7+1p3PwK8SukNlI92KfCSl/oMaPz13YECzlXh3H0+sOsbdglirSLJFQh3z3X3L8OPC4BlQJtjdqvwNYswV4ULr8H+8JdJ4V/HfuohiPWKJFcgzKwtcAnw7HF2iep6xVuBtwE2HfX1Zv7zjRzJPkHkAjgj/M+6t82sV4wzRSKItYpUoGtlpfd5PZ3So7ejBbpm35ALAliz8OmAryi9beJ77h4X6xVBLgjmPfZbYAwQOs7zUV2veCtwK2Pbsf/PGsk+0RbJa35J6byCPsCTwBsxzhSJINYqEoGulZnVB6YCP3f3fcc+Xca3VMianSBXIGvm7iXu3hdoCww0s7RjdglkvSLIVeHrZWbDgXx3X/RNu5Wx7aTXK94KfDPQ7qiv2wJbT2KfCs/l7vu+/medu88GksysWYxznUgQa3VCQa6VmSVRWpKvuPu0MnYJZM1OlCvo95e77wHmAcOOeSrQ99jxcgW0XkOAEWa2ntLTrOea2Z+P2Seq6xVvBb4A6GJmHcysJnAlpTdQPtpM4NrwT3MHA3vdPTfoXGbWysws/HggpWu7M8a5TiSItTqhoNYq/JrPAcvc/TfH2a3C1yySXEGsmZk1N7PG4cd1gPOB5cfsFsR6nTBXEOvl7ne5e1t3T6W0Iz5w96uP2S2q63XCe2JWJHcvNrPbgXco/eTH8+6+xMxuCz//NDCb0p/krgYOAjfESa7vAT8ys2LgEHClh3/sHCtWesPpoUAzM9sM3E/pD3QCW6sIc1X4WoUNAa4BssPnTwHuBlKOyhbEmkWSK4g1SwZeNLPqlBbg6+4+K+j/HiPMFdR77D/Ecr10Kb2ISIKKt1MoIiISIRW4iEiCUoGLiCQoFbiISIJSgYuIJCgVuIhIglKBi4gkqP8PB3Q80lHi85oAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.plot(df)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}